Identification of inertia gravity wave sources observed in the troposphere and the lower stratosphere over a tropical station Gadanki

2016 ◽  
Vol 176-177 ◽  
pp. 202-211 ◽  
Author(s):  
M. Pramitha ◽  
M. Venkat Ratnam ◽  
P.P. Leena ◽  
B.V. Krishna Murthy ◽  
S. Vijaya Bhaskar Rao
2021 ◽  
Vol 215 ◽  
pp. 105567
Author(s):  
P.R. Satheesh Chandran ◽  
S.V. Sunilkumar ◽  
M. Muhsin ◽  
Maria Emmanuel ◽  
Geetha Ramkumar ◽  
...  

2016 ◽  
Author(s):  
Fabrice Chane Ming ◽  
Damien Vignelles ◽  
Fabrice Jegou ◽  
Gwenael Berthet ◽  
Jean-Batiste Renard ◽  
...  

Abstract. Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes and GPS radio occultation data, are examined to identify gravity-wave (GW) induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02 °N, 6.46 °E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km and eastward above 20 km during 27–28 July which is also captured by the European Center for Medium range Weather Forecasting (ECMWF) analyses. Ray-tracing experiments indicate the jet-front system to be the source of observed GWs. Simulated vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations ± 40 mms−1 are produced for the dominant mesoscale GW using the simplified linear GW theory. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the specific humidity. Simulated vertical wind perturbations of the dominant GW and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 μm) are in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relation. The observed mesoscale GW induces a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.


Radio Science ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1356-1367 ◽  
Author(s):  
Gargi Rakshit ◽  
Soumyajyoti Jana ◽  
Animesh Maitra

SOLA ◽  
2005 ◽  
Vol 1 ◽  
pp. 189-192 ◽  
Author(s):  
Shingo Watanabe ◽  
Tatsuya Nagashima ◽  
Seita Emori

2017 ◽  
Vol 122 (16) ◽  
pp. 8517-8524 ◽  
Author(s):  
M. R. Schoeberl ◽  
E. Jensen ◽  
A. Podglajen ◽  
L. Coy ◽  
C. Lodha ◽  
...  

1989 ◽  
Vol 130 (2-3) ◽  
pp. 481-495 ◽  
Author(s):  
Manabu D. Yamanaka ◽  
Shoichiro Fukao ◽  
Hiromasa Matsumoto ◽  
Toru Sato ◽  
Toshitaka Tsuda ◽  
...  

2021 ◽  
Vol 21 (24) ◽  
pp. 18641-18668
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere, the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60∘ S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least part of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parameterisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) show good agreement with the observations and allow for a detailed investigation of resolved gravity waves, their sources, and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency, and a fully described background atmosphere are then used to initialise the Gravity Wave Regional or Global Ray Tracer (GROGRAT) gravity wave ray tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for the indication of source processes on the path of each ray and, thus, quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (>1000 km) lateral displacement from their sources, which already take place at low altitudes (<20 km). Various source processes can be linked to waves within stratospheric gravity wave (GW) patterns, such as the orography equatorward of 50∘ S and non-orographic sources above the Southern Ocean. These findings may explain why superpressure balloons observe enhanced gravity wave momentum fluxes in the lower stratosphere over the Southern Ocean despite an apparent lack of sources at this latitude. Our results also support the need to improve gravity wave parameterisations to account for meridional propagation.


2020 ◽  
Vol 125 (18) ◽  
Author(s):  
Erik A. Lindgren ◽  
Aditi Sheshadri ◽  
Aurélien Podglajen ◽  
Robert W. Carver

Sign in / Sign up

Export Citation Format

Share Document