scholarly journals Effect of meteorology on the variability of ozone in the troposphere and lower stratosphere over a tropical station Thumba (8.5°N, 76.9°E)

2021 ◽  
Vol 215 ◽  
pp. 105567
Author(s):  
P.R. Satheesh Chandran ◽  
S.V. Sunilkumar ◽  
M. Muhsin ◽  
Maria Emmanuel ◽  
Geetha Ramkumar ◽  
...  
2015 ◽  
Vol 33 (3) ◽  
pp. 351-362 ◽  
Author(s):  
P. Kulkarni ◽  
S. Ramachandran

Abstract. An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE) II data over Gadanki (13.5° N, 79.2° E), a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT), while in the lower-stratosphere (LS) values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and < 50% above 25 km. Different techniques (point and limb observations) played the major role in producing the observed differences. SAGE II aerosol extinction in the UT increases as the longitudinal coverage is increased as the spatial aerosol extent increases, while similar extinction values in LS confirm the zonal homogeneity of LS aerosols. The study strongly emphasized that the best meteorological parameters close to the lidar measurement site in terms of space and time and Ba (sr−1), the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.


2001 ◽  
Vol 19 (8) ◽  
pp. 1001-1005 ◽  
Author(s):  
K. Revathy ◽  
S. R. Prabhakaran Nayar ◽  
B. V. Krishna Murthy

Abstract. The vertical velocity in the troposphere-lower stratosphere region measured using MST radar has been utilized to evaluate the temperature profile in the region. The diurnal variation of the tropospheric temperature on one day in August 1998 at the tropical station Gadanki (13.5° N, 79.2° E) has been studied using the MST radar technique. The diurnal variation of the temperature revealed a prominent diurnal variation with the peak in the afternoon hours increasingly delayed in altitude. The tropopause temperature and altitude exhibited a clear diurnal cycle.Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere - composition and chemistry; instruments and technique)


2005 ◽  
Vol 67 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Gopa Dutta ◽  
B. Bapiraju ◽  
T.S.P.L.N. Prasad ◽  
P. Balasubrahmanyam ◽  
H. Aleem Basha

Seasonal, annual and interannual variations of Ozone Mixing Ratio (OMR) have been studied for 12 years, from balloonsondes and Ozonesondes that were launched over Costa Rica (10oN, 83.4oW), a tropical station, as part of Southern Hemisphere Additional Ozonesondes (SHADOZ) network. It was found that near tropopause region there exists prominent peak of OMR during July month for most of the years. Lomb-Scargle Periodogram (LSP) analysis has been applied for the years 2005-2017 to identify the wave activities and found that Quasi Biennial Oscillations (QBO) with period of 2-2.5 years and even higher period oscillations of 3-4 years are prominent in middle troposphere and lower stratosphere regions which could cause large annual variabilities of OMR fluctuations. Fluctuations of OMR were subjected to Morlet wavelet transform over a year, 2008, to study seasonal variabilities. The wavelet analysis confirm that Madden Julian Oscillations (MJO) with periods 49-60 days are prominent during summer near tropopuase and in lower stratosphere regions, while lower period equatorial Kelvin waves of 14-20 days periods dominate during winter and spring in troposphere region, which could be responsible for maximum seasonal variability.


2016 ◽  
Vol 176-177 ◽  
pp. 202-211 ◽  
Author(s):  
M. Pramitha ◽  
M. Venkat Ratnam ◽  
P.P. Leena ◽  
B.V. Krishna Murthy ◽  
S. Vijaya Bhaskar Rao

2014 ◽  
Vol 8 (1) ◽  
pp. 083659 ◽  
Author(s):  
Vasudevannair Krishnakumar ◽  
Malladi Satyanarayana ◽  
Soman R. Radhakrishnan ◽  
Reji K. Dhaman ◽  
Glory Selvan Jayeshlal ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Sign in / Sign up

Export Citation Format

Share Document