Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts

2019 ◽  
Vol 216 ◽  
pp. 11-25 ◽  
Author(s):  
U.C. Dumka ◽  
D.G. Kaskaoutis ◽  
P.C.S. Devara ◽  
R. Kumar ◽  
S. Kumar ◽  
...  
2018 ◽  
Vol 18 (14) ◽  
pp. 10219-10236 ◽  
Author(s):  
Athina-Cerise Kalogridis ◽  
Stergios Vratolis ◽  
Eleni Liakakou ◽  
Evangelos Gerasopoulos ◽  
Nikolaos Mihalopoulos ◽  
...  

Abstract. The scope of this study was to estimate the contribution of fossil fuel and wood burning combustion to black carbon (BC) and carbon monoxide (CO) during wintertime, in Athens. For that purpose, in situ measurements of equivalent black carbon (eBC) and CO were simultaneously conducted in a suburban and an urban background monitoring site in Athens during the 3 months of winter 2014–2015. For the deconvolution of eBC into eBC emitted from fossil fuel (BCff) and wood burning (BCwb), a method based on the spectral dependency of the absorption of pure black carbon and brown carbon was used. Thereafter, BCwb and BCff estimated fractions were used along with measured CO concentrations in a multiple regression analysis, in order to quantify the contribution of each one of the combustion sources to the ambient CO levels. For a comparative analysis of the results, we additionally estimated the wood burning and fossil fuel contribution to CO, calculated on the basis of their CO ∕ NOx emission ratios. The results indicate that during wintertime BC and CO are mainly emitted by local sources within the Athens Metropolitan Area (AMA). Fossil fuel combustion, mainly from road traffic, is found to be the major contributor to both eBC in PM2.5 and CO ambient concentrations in AMA. However, wintertime wood burning makes a significant contribution to the observed eBC (of about 30 %) and CO concentrations (on average, 11 and 16 % of total CO in the suburban and urban background sites respectively). Both BC and CO from biomass burning (BCwb and COwb, respectively) present a clear diurnal pattern, with the highest concentrations during night-time, supporting the theory of local domestic heating being their main source.


2017 ◽  
Author(s):  
Athina-Cerise Kalogridis ◽  
Stergios Vratolis ◽  
Eleni Liakakou ◽  
Evangelos Gerasopoulos ◽  
Nikolaos Mihalopoulos ◽  
...  

Abstract. The scope of this study was to estimate the contribution of fossil fuel and wood burning combustion to black carbon (BC) and carbon monoxide (CO) during wintertime, in Athens. For that purpose, in-situ measurements of equivalent Black Carbon (eBC) and CO were simultaneously conducted in a suburban and an urban background monitoring site in Athens during three months of winter 2014–2015. For the deconvolution of eBC into eBC emitted from fossil fuel (BCff) and wood burning (BCwb), a method based on the spectral dependency of the absorption of pure black carbon and brown carbon was used. Thereafter, BCwb and BCff estimated fractions were used along with measured CO concentrations in a multiple regression analysis, in order to quantify the contribution of each one of the combustion sources to the ambient CO levels. For an independent evaluation of the results, we additionally estimated the wood-burning and fossil fuel contribution to CO, calculated on the basis of their CO/NOx emission ratios. The results indicate that during wintertime BC and CO are mainly emitted by local sources within the Athens Metropolitan Area (AMA), and are only occasionally affected by long-range transport. Fossil fuel combustion, mainly from road traffic, is found to be the major contributor to both eBC in PM2.5 and CO ambient concentrations in AMA. However, wintertime wood burning makes a significant contribution of about 30 % to the observed eBC and the CO concentrations (on average, 11 % and 16 % of total CO in the two sites, respectively). Both, BC and CO from biomass burning (BCwb and COwb, respectively) present a clear diurnal pattern with highest concentrations during night, supporting the local domestic heating as their main source.


2011 ◽  
Vol 4 (7) ◽  
pp. 1409-1420 ◽  
Author(s):  
H. Herich ◽  
C. Hueglin ◽  
B. Buchmann

Abstract. The contributions of fossil fuel (FF) and wood burning (WB) emissions to black carbon (BC) have been investigated in the recent past by analysis of multi-wavelength aethalometer data. This approach utilizes the stronger light absorption of WB aerosols in the near ultraviolet compared to the light absorption of aerosols from FF combustion. Here we present 2.5 years of seven-wavelength aethalometer data from one urban and two rural background sites in Switzerland measured from 2008–2010. The contribution of WB and FF to BC was directly determined from the aerosol absorption coefficients of FF and WB aerosols which were calculated by using confirmed Ångstrom exponents and aerosol light absorption cross-sections that were determined for all sites. Reasonable separation of total BC into contributions from FF and WB was achieved for all sites and seasons. The obtained WB contributions to BC are well correlated with measured concentrations of levoglucosan and potassium while FF contributions to BC correlate nicely with NOx. These findings support our approach and show that the applied source apportionment of BC is well applicable for long-term data sets. During winter, we found that BC from WB contributes on average 24–33 % to total BC at the considered measurement sites. This is a noticeable high fraction as the contribution of wood burning to the total final energy consumption is in Switzerland less than 4 %.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Huang Zheng ◽  
Shaofei Kong ◽  
Nan Chen ◽  
Zewei Fan ◽  
Ying Zhang ◽  
...  

AbstractThe result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (αff) and wood burning (αwb). A method using hourly measured potassium to calculate the αff and αwb values was developed in this study. Results showed that the optimal αff and αwb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with αff and αwb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies.


2012 ◽  
Vol 5 (5) ◽  
pp. 1031-1043 ◽  
Author(s):  
M. Laborde ◽  
P. Mertes ◽  
P. Zieger ◽  
J. Dommen ◽  
U. Baltensperger ◽  
...  

Abstract. Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained by incomplete removal of non-refractory components in the thermodenuder. The amount of remaining non-refractory matter was estimated to be below 30% by mass, according to a comparison of the scattering cross sections of the whole particles with that of the pure BC cores. The SP2 sensitivity to rBC from wood burning exhaust agrees with the SP2 sensitivity to rBC from diesel exhaust within an error of less than 14% (≤40 fg). If, due to experimental restrictions, diesel exhaust cannot be used, untreated fullerene soot was found to give an SP2 calibration curve similar to diesel exhaust and ambient rBC (within ±10% for a rBC mass ≤15 fg) and is therefore recommended although two different batches differed by ~14% between themselves. In addition, the SP2 was found to be up to 40% more sensitive to Aquadag® than to diesel exhaust rBC. Therefore Aquadag® cannot be recommended for atmospheric application without accounting for the sensitivity difference. These findings for fullerene soot and Aquadag® confirm results from previous literature.


2019 ◽  
Vol 203 ◽  
pp. 252-261 ◽  
Author(s):  
Amirhosein Mousavi ◽  
Mohammad H. Sowlat ◽  
Christopher Lovett ◽  
Martin Rauber ◽  
Soenke Szidat ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 4211-4233 ◽  
Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Carbonaceous aerosol (total carbon, TCp) was source apportioned at nine European rural background sites, as part of the European Measurement and Evaluation Programme (EMEP) Intensive Measurement Periods in fall 2008 and winter/spring 2009. Five predefined fractions were apportioned based on ambient measurements: elemental and organic carbon, from combustion of biomass (ECbb and OCbb) and from fossil-fuel (ECff and OCff) sources, and remaining non-fossil organic carbon (OCrnf), dominated by natural sources. OCrnf made a larger contribution to TCp than anthropogenic sources (ECbb, OCbb, ECff, and OCff) at four out of nine sites in fall, reflecting the vegetative season, whereas anthropogenic sources dominated at all but one site in winter/spring. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the central European sites in fall, whereas fossil-fuel (OCff + ECff) sources dominated at the southernmost and the two northernmost sites. Residential wood burning emissions explained 30 %–50 % of TCp at most sites in the first week of sampling in fall, showing that this source can be the dominant one, even outside the heating season. In winter/spring, biomass burning was the major anthropogenic source at all but two sites, reflecting increased residential wood burning emissions in the heating season. Fossil-fuel sources dominated EC at all sites in fall, whereas there was a shift towards biomass burning for the southernmost sites in winter/spring. Model calculations based on base-case emissions (mainly officially reported national emissions) strongly underpredicted observational derived levels of OCbb and ECbb outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential wood burning (and including intermediate volatility compounds, IVOCs) improved model results compared to the base-case emissions, but modeled levels were still substantially underestimated compared to observational derived OCbb and ECbb levels at the southernmost sites. Our study shows that natural sources are a major contributor to carbonaceous aerosol in Europe, even in fall and in winter/spring, and that residential wood burning emissions are equally as large as or larger than that of fossil-fuel sources, depending on season and region. The poorly constrained residential wood burning emissions for large parts of Europe show the obvious need to improve emission inventories, with harmonization of emission factors between countries likely being the most important step to improve model calculations for biomass burning emissions, and European PM2.5 concentrations in general.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 835-845 ◽  
Author(s):  
M Molnár ◽  
L Haszpra ◽  
É Svingor ◽  
I Major ◽  
I Svetlik

A high-precision atmospheric CO2 monitoring station was developed as a field unit. Within this, an integrating CO2 sampling system was applied to collect samples for radiocarbon measurements. One sampler was installed in the second largest city of Hungary (Debrecen station) and 2 independent 14CO2 sampling lines were installed ∼300 km from Debrecen in a rural site at Hegyhátsál station as independent background references, where high-precision atmospheric CO2 mixing ratios have been measured since 1994. Fossil fuel CO2 content in the air of the large Hungarian city of Debrecen was determined during the winter of 2008 using both the measurements of CO2 mixing ratio and 14C content of air. Fossil fuel CO2 was significantly enhanced at Debrecen relative to the clean-air site at Hegyhátsál.


Sign in / Sign up

Export Citation Format

Share Document