Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China

2019 ◽  
Vol 222 ◽  
pp. 88-99 ◽  
Author(s):  
Yong Zhang ◽  
Qing Zhou ◽  
Shanshan Lv ◽  
Shuze Jia ◽  
Fa Tao ◽  
...  
Author(s):  
A. Agarwal ◽  
J. S. Pillai ◽  
K. Aurobindo ◽  
J. D. Abhyankar ◽  
G. Isola ◽  
...  
Keyword(s):  
Ka Band ◽  

2011 ◽  
Vol 50 (7) ◽  
pp. 1543-1557 ◽  
Author(s):  
Mircea Grecu ◽  
Lin Tian ◽  
William S. Olson ◽  
Simone Tanelli

AbstractIn this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar–radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-half of the width of the Ku-band radar swath) over the earth’s surface. Therefore, a particular challenge is to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specific location inside that swath, in other words, an algorithm capable of exploiting the information provided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld–Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique–based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation.


Author(s):  
Jae In Song ◽  
Seong Soo Yum ◽  
Sung‐Hwa Park ◽  
Ki‐Hoon Kim ◽  
Ki‐Jun Park ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 1674 ◽  
Author(s):  
Zbyněk Sokol ◽  
Jana Minářová ◽  
Petr Novák

In radar meteorology, greater interest is dedicated to weather radars and precipitation analyses. However, cloud radars provide us with detailed information on cloud particles from which the precipitation consists of. Motivated by research on the cloud particles, a vertical Ka-band cloud radar (35 GHz) was installed at the Milešovka observatory in Central Europe and was operationally measuring since June 2018. This study presents algorithms that we use to retrieve vertical air velocity (Vair) and hydrometeors. The algorithm calculating Vair is based on small-particle tracers, which considers the terminal velocity of small particles negligible and, thereby, Vair corresponds to the velocity of the small particles. The algorithm classifying hydrometeors consists of calculating the terminal velocity of hydrometeors and the vertical temperature profile. It identifies six hydrometeor types (cloud droplets, ice, and four precipitating particles: rain, graupel, snow, and hail) based on the calculated terminal velocity of hydrometeors, temperature, Vair, and Linear Depolarization Ratio. The results of both the Vair and the distribution of hydrometeors were found to be realistic for a thunderstorm associated with significant lightning activity on 1 June 2018.


2020 ◽  
Vol 12 (23) ◽  
pp. 3965
Author(s):  
Roberto Aguirre ◽  
Felipe Toledo ◽  
Rafael Rodríguez ◽  
Roberto Rondanelli ◽  
Nicolas Reyes ◽  
...  

Radars are used to retrieve physical parameters related to clouds and fog. With these measurements, models can be developed for several application fields such as climate, agriculture, aviation, energy, and astronomy. In Chile, coastal fog and low marine stratus intersect the coastal topography, forming a thick fog essential to sustain coastal ecosystems. This phenomenon motivates the development of cloud radars to boost scientific research. In this article, we present the design of a Ka-band cloud radar and the experiments that prove its operation. The radar uses a frequency-modulated continuous-wave with a carrier frequency of 38 GHz. By using a drone and a commercial Lidar, we were able to verify that the radar can measure reflectivities in the order of −60 dBZ at 500 m of distance, with a range resolution of 20 m. The lower needed range coverage imposed by our case of study enabled a significant reduction of the instrument cost compared to existent alternatives. The portability and low-cost of the designed instrument enable its implementation in a distributed manner along the coastal mountain range, as well as its use in medium-size aerial vehicles or balloons to study higher layers. The main features, limitations, and possible improvements to the current instrument are discussed.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Su‐Bin Oh ◽  
Pavlos Kollias ◽  
Jeong‐Soon Lee ◽  
Seung‐Woo Lee ◽  
Yong Hee Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document