Spatial and temporal variations of precipitation concentration and their relationships with large-scale atmospheric circulations across Northeast China

2019 ◽  
Vol 222 ◽  
pp. 62-73 ◽  
Author(s):  
Rui Wang ◽  
Jiquan Zhang ◽  
Enliang Guo ◽  
Chunli Zhao ◽  
Tiehua Cao
Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 220 ◽  
Author(s):  
Patlakas ◽  
Stathopoulos ◽  
Flocas ◽  
Kalogeri ◽  
Kallos

The climate of the Arabian Peninsula is characterized by significant spatial and temporal variations, due to its complex topography and the large-scale atmospheric circulation. Furthermore, the role of dust in the formation of regional climate is considered to be crucial. In this work, the regional climatology for the Arabian Peninsula has been studied by employing a high resolution state of the art atmospheric model that included sophisticated physical parameterization schemes and online treatment of natural aerosol particles. The simulations covered a 30-year period (1986–2015) with a temporal resolution of 3 h and a spatial distance of 9 km. The main focus was given to the spatial and temporal variations of mean temperature and temperature extremes, wind speed and direction, and relative humidity. The results were evaluated using in situ measurements indicating a good agreement. An examination of possible climatic changes during the present climate was also performed through a comprehensive analysis of the trends of mean temperature and temperature extremes. The statistical significant trend values were overall positive and increased over the northwestern parts of the examined area. Similar spatial distributions were found for the daily minimum and maximum temperatures. Higher positive values emerged for the daily maxima.


2021 ◽  
Vol 244 ◽  
pp. 117962
Author(s):  
Song Cui ◽  
Zihan Song ◽  
Leiming Zhang ◽  
Zhenxing Shen ◽  
Rupert Hough ◽  
...  

2014 ◽  
Vol 27 (23) ◽  
pp. 8707-8723 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Masahiro Watanabe ◽  
Masahide Kimoto ◽  
Minoru Chikira

Abstract The authors demonstrate that an appropriate treatment of convective entrainment is essential for determining spatial distributions of and temporal variations in precipitation. Four numerical experiments are performed using atmospheric models with different entrainment characteristics: a control experiment (Ctl), a no-entrainment experiment (NoEnt), an original Arakawa–Schubert experiment (AS), and an AS experiment with a simple empirical suppression of convection depending on cloud-layer humidity (ASRH). The fractional entrainment rates of AS and ASRH are constant for each cloud type and are very small in the lower troposphere compared with those in the Ctl, in which half of the buoyancy-generated energy is consumed by entrainment. Spatial and temporal variations in the observed precipitation are satisfactorily reproduced in the Ctl, but their amplitudes are underestimated with a so-called double intertropical convergence zone bias in the NoEnt and AS. The spatial variation is larger in the Ctl because convection is more active over humid ascending regions and more suppressed over dry subsidence regions. Feedback processes involving convection, the large-scale circulation, free tropospheric moistening by congestus, and radiation enhance the variations. The temporal evolution of precipitation events is also more realistic in the Ctl, because congestus moistens the midtroposphere, and large precipitation events occur once sufficient moisture is available. The large entrainment in the lower troposphere, increasing free tropospheric moistening by congestus and enhancing the coupling of convection to free tropospheric humidity, is suggested to be important for the realistic spatial and temporal variations.


2021 ◽  
Author(s):  
Johanna Hingst ◽  
Claude Hillaire-Marcel ◽  
Friedrich Lucassen ◽  
Christoph Vogt ◽  
Emmanuel Okuma ◽  
...  

<p>The reconstruction of late glacial ice sheet fluctuations helps understanding and modelling the local glacio-isostatic adjustment as well as global eustatic changes. From this viewpoint, the large-scale spatial and temporal variations of the Fox Basin-Baffin Island ice dome (NE Laurentide Ice Sheet, Canada) have been well documented. However, high frequency Holocene fluctuations and final decay of it are still poorly documented. We have thus investigated the behaviour of one of its eastern outlet glaciers in the Clyde Inlet fjord, northeastern Baffin Island. The reconstruction of ice sheet margin fluctuation is based on the radiogenic isotope composition (Sr-Pb-Nd) and mineral assemblage of detrital sediments in two marine cores raised within and off the Clyde Inlet (GeoB22346-3, Clyde Inlet head; GeoB22357-3, adjacent continental shelf). Radiogenic isotope ratios and bulk mineral assemblages from such sites are imprints of bedrock erosion along the active ice margin, as well as along ice-streams and subglacial drainage patterns. They may thus be used for the reconstruction of spatial and temporal variations in meltwater discharge into Baffin Bay and of the position of the active margin fluctuations inland. The location of the two sediment cores also informs on the traceability of radiogenic isotope signals from proximal to more distal areas of sediment deposition. Changes in mineralogical and radiogenic isotope compositions at the proximal core site suggest ice margin and drainage fluctuations rather than a constant retreat throughout the Holocene. Shelf sediment provenances are dominated by relatively homogenized Baffin Island inputs during the mid to late Holocene, but record a slightly offshore ice margin position from the late Pleistocene to the early Holocene.</p>


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Yalin Tian ◽  
Zhongwei Yan ◽  
Zhen Li

As one of the largest arid and semi-arid regions in the world, central Asia (CA) is very sensitive to changes in regional climate. However, because of the poor continuity of daily observational precipitation records in CA, the spatial and temporal variations of extreme precipitation in recent decades remain unclear. Considering their good spatial and temporal continuity, gridded data, such as Climate Prediction Center (CPC) global precipitation, and reanalysis data, such as ERA-Interim (ERA), are helpful for exploring the spatial–temporal variations of extreme precipitation. This study evaluates how well CPC and ERA can represent observed precipitation extremes by comparing the differences in eight extreme precipitation indices and observation data at 84 meteorological stations. The results indicate that the CPC (except for 1979–1981) is more suitable for depicting changes in precipitation extremes. Based on the CPC data for the period 1982–2020, we found that seven indices of precipitation extremes, including consecutive wet days (CWD), max1-day precipitation amount (Rx1day), max5-day precipitation amount (Rx5day), number of heavy precipitation days (R10), very wet days (R95p), annual total precipitation in wet days (PRCPTOT), and simple precipitation intensity index (SDII) have increased by 0.2 d/10a, 0.9 mm/10a, 1.8 mm/10a, 0.3 d/10, 8.4 mm/10a, 14.3 mm/10a and 0.1 mm/d/10a, respectively, and the consecutive dry days (CDDs) have decreased by −3.10 d/10a. It is notable that CDDs decreased significantly in the north of Xinjiang (XJ) but increased in Kyrgyzstan (KG), Tajikistan (TI), and eastern Turkmenistan (TX). The other indices increased clearly in the west of XJ, north of Kazakhstan (KZ), and east of KG but decreased in the south of KG, TI, and parts of XJ. For most indices, the largest change occurred in spring, the main season of precipitation in CA. Therefore, the large-scale atmospheric circulation in April is analyzed to contrast between the most and least precipitation years for the region. A typical circulation pattern in April for those extremely wet years includes an abnormal low-pressure center at 850 hpa to the east of the Caspian Sea, which enhances the southerly winds from the Indian Ocean and hence the transportation of water vapor required for precipitation into CA. This abnormal circulation pattern occurred more frequently after 2001 than before, thus partly explaining the recent increasing trends of precipitation extremes in CA.


Sign in / Sign up

Export Citation Format

Share Document