scholarly journals Regional Climatic Features of the Arabian Peninsula

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 220 ◽  
Author(s):  
Patlakas ◽  
Stathopoulos ◽  
Flocas ◽  
Kalogeri ◽  
Kallos

The climate of the Arabian Peninsula is characterized by significant spatial and temporal variations, due to its complex topography and the large-scale atmospheric circulation. Furthermore, the role of dust in the formation of regional climate is considered to be crucial. In this work, the regional climatology for the Arabian Peninsula has been studied by employing a high resolution state of the art atmospheric model that included sophisticated physical parameterization schemes and online treatment of natural aerosol particles. The simulations covered a 30-year period (1986–2015) with a temporal resolution of 3 h and a spatial distance of 9 km. The main focus was given to the spatial and temporal variations of mean temperature and temperature extremes, wind speed and direction, and relative humidity. The results were evaluated using in situ measurements indicating a good agreement. An examination of possible climatic changes during the present climate was also performed through a comprehensive analysis of the trends of mean temperature and temperature extremes. The statistical significant trend values were overall positive and increased over the northwestern parts of the examined area. Similar spatial distributions were found for the daily minimum and maximum temperatures. Higher positive values emerged for the daily maxima.

2017 ◽  
Vol 30 (24) ◽  
pp. 9897-9914 ◽  
Author(s):  
Meng Gao ◽  
Christian L. E. Franzke

In this study, temporal trends and spatial patterns of extreme temperature change are investigated at 352 meteorological stations in China over the period 1956–2013. The temperature series are first examined for evidence of long-range dependence at daily and monthly time scales. At most stations there is evidence of significant long-range dependence. Noncrossing quantile regression has been used for trend analysis of temperature series. For low quantiles of daily mean temperature and monthly minimum value of daily minimum temperature (TNn) in January, there is an increasing trend at most stations. A decrease is also observed in a zone ranging from northeastern China to central China for higher quantiles of daily mean temperature and monthly maximum value of daily maximum temperature (TXx) in July. Changes of the large-scale atmospheric circulation partly explain the trends of temperature extremes. To reveal the spatial pattern of temperature changes, a density-based spatial clustering algorithm is used to cluster the quantile trends of daily temperature series for 19 quantile levels (0.05, 0.1, …, 0.95). Spatial cluster analysis identifies a few large clusters showing different warming patterns in different parts of China. Finally, quantile regression reveals the connections between temperature extremes and two large-scale climate patterns: El Niño–Southern Oscillation (ENSO) and the Arctic Oscillation (AO). The influence of ENSO on cold extremes is significant at most stations, but its influence on warm extremes is only weakly significant. The AO not only affects the cold extremes in northern and eastern China, but also affects warm extremes in northeastern and southern China.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1960 ◽  
Author(s):  
Hu ◽  
Xu ◽  
Huang ◽  
Zhou ◽  
Pang ◽  
...  

Precipitation on the Qinghai–Tibet Plateau (TP) in southwestern China is subject to interactions between the complex and variable terrain and the sensitive climate. The regional climate is mainly affected by three circulations: westerlies, the South Asian monsoon, and the East Asian monsoon. Spatial and temporal variations in the rainy season onset were characterised based on daily precipitation from 106 meteorological stations on the TP from 1971 to 2015. Using the Theil–Sen Median trend analysis, Mann–Kendall test and mutation detection, the characteristics and reasons for the variations during the rainy season over the plateau over the past 45 years were investigated. The following results were obtained from the analysis: (1) There were obvious regional differences in the rainy season onset over the TP, and the rainy season began on the southeastern plateau and moved northwestward. (2) The TP rainy season underwent a significant mutation in approximately 1997, and following this mutation, the area affected by the delayed rainy season increased. (3) Against the background of global warming, the rainy season trend over the TP was advanced; however, there were still several multiple contiguous concentrated areas on the plateau. (4) Before the rainy season mutation, there were two centres of delayed precipitation on the plateau, which existed primarily due to their location at the end of the plateau water vapour transport channel. After the mutation, the number of delayed precipitation centres on the plateau increased to three and presented a spatially expanding trend, which may be related to the weakening trend in atmospheric circulation.


2014 ◽  
Vol 27 (23) ◽  
pp. 8707-8723 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Masahiro Watanabe ◽  
Masahide Kimoto ◽  
Minoru Chikira

Abstract The authors demonstrate that an appropriate treatment of convective entrainment is essential for determining spatial distributions of and temporal variations in precipitation. Four numerical experiments are performed using atmospheric models with different entrainment characteristics: a control experiment (Ctl), a no-entrainment experiment (NoEnt), an original Arakawa–Schubert experiment (AS), and an AS experiment with a simple empirical suppression of convection depending on cloud-layer humidity (ASRH). The fractional entrainment rates of AS and ASRH are constant for each cloud type and are very small in the lower troposphere compared with those in the Ctl, in which half of the buoyancy-generated energy is consumed by entrainment. Spatial and temporal variations in the observed precipitation are satisfactorily reproduced in the Ctl, but their amplitudes are underestimated with a so-called double intertropical convergence zone bias in the NoEnt and AS. The spatial variation is larger in the Ctl because convection is more active over humid ascending regions and more suppressed over dry subsidence regions. Feedback processes involving convection, the large-scale circulation, free tropospheric moistening by congestus, and radiation enhance the variations. The temporal evolution of precipitation events is also more realistic in the Ctl, because congestus moistens the midtroposphere, and large precipitation events occur once sufficient moisture is available. The large entrainment in the lower troposphere, increasing free tropospheric moistening by congestus and enhancing the coupling of convection to free tropospheric humidity, is suggested to be important for the realistic spatial and temporal variations.


2017 ◽  
Vol 74 (8) ◽  
pp. 2467-2487 ◽  
Author(s):  
T. Sakazaki ◽  
K. Hamilton

Abstract The lower-atmospheric circulation in the tropics is strongly influenced by large-scale daily variations referred to as atmospheric solar tides. Most earlier studies have used simplified linear theory to explain daily variations in the tropics. The present study employs a comprehensive limited-area atmospheric model and revisits some longstanding issues related to atmospheric tidal dynamics. The tides in the tropical lower atmosphere are realistically simulated in the control experiment with a near-global (75°S–75°N) version of the model. Sensitivity experiments with different aspects of the solar heating suppressed showed that the semidiurnal (S2) tide near the surface can be attributed roughly equally to stratospheric and tropospheric direct solar heating and that the diurnal (S1) tide is excited almost entirely by tropospheric direct solar heating as well as solar heating of Earth’s surface. Linear theory with forcing only by direct radiative heating predicts the phase of the S2 barometric oscillation should be ~0910 LT versus the ~0945 LT phase seen in low-latitude observations. The roles of (i) convective and latent heating and (ii) mechanical dissipation, in determining the S2 phase, are assessed in the model. It is found that the former effect delays the phase by ~25 min and the latter by ~5 min; these two effects together explain the observed phase. When the model is run in limited-area domains comparable to those used in typical regional climate studies the S2, but not S1, tide is found to be significantly weaker than observed, even using atmospheric reanalysis data to drive the lateral boundaries.


2020 ◽  
Author(s):  
Yan Yu ◽  
Paul Ginoux

Abstract. Despite Australian dust's critical role in the regional climate and surrounding marine ecosystems, the controlling factors of the spatio-temporal variations of Australian dust are not fully understood. Here we assess the connections between observed spatial-temporal variations of Australian dust with key modes of large-scale climate variability, namely the El Niño-Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO). Multiple dust observations from Aerosol Robotic Network (AERONET), weather stations, and satellite instruments, namely the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) are examined. The assessed multiple dust observations consistently identify the natural and agricultural dust hotspots in Australia, including the Lake Eyre Basin, Lake Torrens Basin, Lake Frome Basin, Simpson Desert, Barwon-Darling Basin, Riverina, Barkly Tableland, and lee side of the Great Diving Range, as well as a country-wide, austral spring-to-summer peak in dust activity. Our regression analysis of observed dust optical depth (DOD) upon an ocean Niño index confirms previous model-based finding on the enhanced dust activity in southern and eastern Australia during the subsequent austral spring and summer dust season following the strengthening of austral wintertime El Niño. Our analysis further indicates the modulation of the ENSO-dust relationship with the MJO phases. During sequential MJO phases, the dust-active center moves from west to east associated with the eastward propagation of MJO, with maximum enhancement in dust activity at about 120° E, 130° E, and 140° E corresponding to MJO phases 1–2, 3–4, and 5–6, respectively. MJO phases 3–6 are favorable for enhanced ENSO modulation of dust activity, especially the occurrence of extreme dust events, in southeastern Australia, currently hypothesized to be attributed to the interaction between MJO-induced anomalies in convection and wind and ENSO-induced anomalies in soil moisture and vegetation.


2016 ◽  
Vol 144 (4) ◽  
pp. 1423-1447 ◽  
Author(s):  
Junya Uchida ◽  
Masato Mori ◽  
Hisashi Nakamura ◽  
Masaki Satoh ◽  
Kentaroh Suzuki ◽  
...  

Abstract A nonhydrostatic stretched-grid (SG) model is used to analyze the large-scale errors generated by stretching horizontal grids and their influence on a region of interest. Simulations by a fully compressible, nonhydrostatic global atmospheric model, the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), and its SG regional model, stretched-NICAM, were performed for the months of March, April, and May of 2011 using various resolutions and stretching factors. A comparison of week-long accumulative precipitation amounts between the Tropical Rainfall Measuring Mission (TRMM) satellite data and the quasi-uniform and SG simulations showed that a stretched run better represents storms and associated precipitation because the errors generated in the outer regions with coarser grid spacing do not significantly affect the inner domain centered at the focal point. For season-long simulations, in one particular set of stretched runs with the focal point located in the eastern United States, the artificial suppression of baroclinic development of midlatitude eddies in the Southern Hemisphere weakened the eddy-driven polar-front jet (PFJ), which yielded a cold bias at mid- to high latitudes. However, in the Northern Hemisphere, in contrast, the aforementioned changes are less apparent. Therefore, for the SG runs, the mean temperature was maintained at the region of interest, and an increased amount of moderate to heavy precipitation, which is also frequently found in the TRMM data, was observed; thus, the benefits of increased resolution were realized. However, careful attention must be given when applying the SG model because a regional climate response to the change in the large-scale circulations may not be fully accounted for.


Sign in / Sign up

Export Citation Format

Share Document