scholarly journals Spatial and Temporal Variations of Extreme Precipitation in Central Asia during 1982–2020

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Yalin Tian ◽  
Zhongwei Yan ◽  
Zhen Li

As one of the largest arid and semi-arid regions in the world, central Asia (CA) is very sensitive to changes in regional climate. However, because of the poor continuity of daily observational precipitation records in CA, the spatial and temporal variations of extreme precipitation in recent decades remain unclear. Considering their good spatial and temporal continuity, gridded data, such as Climate Prediction Center (CPC) global precipitation, and reanalysis data, such as ERA-Interim (ERA), are helpful for exploring the spatial–temporal variations of extreme precipitation. This study evaluates how well CPC and ERA can represent observed precipitation extremes by comparing the differences in eight extreme precipitation indices and observation data at 84 meteorological stations. The results indicate that the CPC (except for 1979–1981) is more suitable for depicting changes in precipitation extremes. Based on the CPC data for the period 1982–2020, we found that seven indices of precipitation extremes, including consecutive wet days (CWD), max1-day precipitation amount (Rx1day), max5-day precipitation amount (Rx5day), number of heavy precipitation days (R10), very wet days (R95p), annual total precipitation in wet days (PRCPTOT), and simple precipitation intensity index (SDII) have increased by 0.2 d/10a, 0.9 mm/10a, 1.8 mm/10a, 0.3 d/10, 8.4 mm/10a, 14.3 mm/10a and 0.1 mm/d/10a, respectively, and the consecutive dry days (CDDs) have decreased by −3.10 d/10a. It is notable that CDDs decreased significantly in the north of Xinjiang (XJ) but increased in Kyrgyzstan (KG), Tajikistan (TI), and eastern Turkmenistan (TX). The other indices increased clearly in the west of XJ, north of Kazakhstan (KZ), and east of KG but decreased in the south of KG, TI, and parts of XJ. For most indices, the largest change occurred in spring, the main season of precipitation in CA. Therefore, the large-scale atmospheric circulation in April is analyzed to contrast between the most and least precipitation years for the region. A typical circulation pattern in April for those extremely wet years includes an abnormal low-pressure center at 850 hpa to the east of the Caspian Sea, which enhances the southerly winds from the Indian Ocean and hence the transportation of water vapor required for precipitation into CA. This abnormal circulation pattern occurred more frequently after 2001 than before, thus partly explaining the recent increasing trends of precipitation extremes in CA.

2021 ◽  
Author(s):  
Xin Li

<p>Spatioteporal variability of precipitation extremes is increasingly the focus of attention in both the climate and hydrology communites, especailly in the context of global climate change. Indicated by the Clausius-Clapeyron equation under the constant relative humudity assumption, it is expected, from the thermodynamic perspective, that extreme precipitation would increase as globe warms. However, when it comes to the regional response of precipitation to global warming, the resutls could be highly uncertain due to the influences of dynamic factors such as large-scale circlation patterns and local effects. Here, we investigate trends in a set of extreme precipitation indices (EPIs) over the Yangtze River Basin (YRB) during the period of 1960-2019. Also, we explore the possible associations between spatiotemporal variability of the EPIs and global warming, ENSO, and local effects. Our resutls show marked rising trends in frequency and intensity of Yangtze precipitation extremes. Global warming tends to enhance the frequency and intensity of preciptation extremes over the YRB. The La Niña phase of ENSO could lead to an increase of precipitation extremes in the current year, but a decrease of precipitation extremes in the coming year. Local warming mainly exerts a reducing effect on precipitation extremes, which is likely associated with the significant decrease of relative humidity in the YRB. Our findings highlight the need for a systematic approach to investigate changes in precipitation extremes over the YRB.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 220 ◽  
Author(s):  
Patlakas ◽  
Stathopoulos ◽  
Flocas ◽  
Kalogeri ◽  
Kallos

The climate of the Arabian Peninsula is characterized by significant spatial and temporal variations, due to its complex topography and the large-scale atmospheric circulation. Furthermore, the role of dust in the formation of regional climate is considered to be crucial. In this work, the regional climatology for the Arabian Peninsula has been studied by employing a high resolution state of the art atmospheric model that included sophisticated physical parameterization schemes and online treatment of natural aerosol particles. The simulations covered a 30-year period (1986–2015) with a temporal resolution of 3 h and a spatial distance of 9 km. The main focus was given to the spatial and temporal variations of mean temperature and temperature extremes, wind speed and direction, and relative humidity. The results were evaluated using in situ measurements indicating a good agreement. An examination of possible climatic changes during the present climate was also performed through a comprehensive analysis of the trends of mean temperature and temperature extremes. The statistical significant trend values were overall positive and increased over the northwestern parts of the examined area. Similar spatial distributions were found for the daily minimum and maximum temperatures. Higher positive values emerged for the daily maxima.


2020 ◽  
Author(s):  
aiping huang

<p>Lake eutrophication is a key point in water environmental problems in the world. Spatiotemporal variations of nutrients and chlorophyll-a and eutrophication index in Poyang Lake, the largest freshwater lake in China, are analyzed in this paper basing on field observation data at 17 sampling points from 2011 to 2016. The results show that nutrient concentrations have obvious seasonality characteristics and present bigger values in the low water period than the high water period. The peak value of chlorophyll-a concentration appears in July and October respectively. As a whole, the eutrophication index in the low water period is higher than the high water period, and the maximum value is found in October which mainly due to the high chlorophyll-a concentration. Poyang Lake is at light eutrophication level from 2011 to 2012, and mesotrophic from 2013 to 2016. From the perspective of space, nutrient concentrations in the southern part of the lake is higher than the northern part in general, and chlorophyll-a and eutrophication index show the similar law. This paper makes a quantitative analysis for spatial and temporal variations of eutrophication which benefit the water management especially water pollution control in Poyang Lake</p>


2015 ◽  
Vol 11 (4) ◽  
pp. 619-633 ◽  
Author(s):  
B. Aichner ◽  
S. J. Feakins ◽  
J. E. Lee ◽  
U. Herzschuh ◽  
X. Liu

Abstract. Central Asia is located at the confluence of large-scale atmospheric circulation systems. It is thus likely to be highly susceptible to changes in the dynamics of those systems; however, little is still known about the regional paleoclimate history. Here we present carbon and hydrogen isotopic compositions of n-alkanoic acids from a late Holocene sediment core from Lake Karakuli (eastern Pamir, Xinjiang Province, China). Instrumental evidence and isotope-enabled climate model experiments with the Laboratoire de Météorologie Dynamique Zoom model version 4 (LMDZ4) demonstrate that δ D values of precipitation in the region are influenced by both temperature and precipitation amount. We find that these parameters are inversely correlated on an annual scale, i.e., the climate has varied between relatively cool and wet and more warm and dry over the last 50 years. Since the isotopic signals of these changes are in the same direction and therefore additive, isotopes in precipitation are sensitive recorders of climatic changes in the region. Additionally, we infer that plants use year-round precipitation (including snowmelt), and thus leaf wax δ D values must also respond to shifts in the proportion of moisture derived from westerly storms during late winter and early spring. Downcore results give evidence for a gradual shift to cooler and wetter climates between 3.5 and 2.5 cal kyr BP, interrupted by a warm and dry episode between 3.0 and 2.7 kyr BP. Further cool and wet episodes occur between 1.9 and 1.5 and between 0.6 and 0.1 kyr BP, the latter coeval with the Little Ice Age. Warm and dry episodes from 2.5 to 1.9 and 1.5 to 0.6 kyr BP coincide with the Roman Warm Period and Medieval Climate Anomaly, respectively. Finally, we find a drying tend in recent decades. Regional comparisons lead us to infer that the strength and position of the westerlies, and wider northern hemispheric climate dynamics, control climatic shifts in arid Central Asia, leading to complex local responses. Our new archive from Lake Karakuli provides a detailed record of the local signatures of these climate transitions in the eastern Pamir.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1981 ◽  
Author(s):  
Kang Liang

Precipitation extremes have important implications for regional water resources and ecological environment in endorheic (landlocked) basins. The Hongjian Lake Basin (HJLB), as the representative inflow area in the Ordos Plateau in China, is suffering from water scarcity and an ecosystem crisis; however, previous studies have paid little attention to changes in precipitation extremes in the HJLB. In this study, we investigated the spatio-temporal variations of the core extreme precipitation indices (i.e., PRCTOT, R99p, Rx1day, Rx5day, SDII, R1, R10, CWD, and CDD) recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), and analyzed the climatic dry–wet regime indicated by these extreme indices during 1960–2014 in the HJLB. The results show that the nine extreme indices had large differences in temporal and spatial variation characteristics. All the nine extreme precipitation indices showed a large fluctuation, both in the whole period and in the three detected different sub-periods, with variation magnitudes of 13%–52%. Most extreme indices had non-significant downward trends, while only the consecutive wet days (CWD) had a significant upward trend. The eight extreme wet indices increased from northwest to southeast, while the consecutive dry days (CDD) had the opposite change direction. Each index had a different trend with different spatial distribution locations and areas. The nine extreme indices revealed that the climate in the HJLB has become a drought since the early 1980s. This was specifically indicated by all four extreme precipitation quantity indices (PRCTOT, R99p, Rx1day, Rx5day) and the extreme intensity index (SDII) declining, as well as the number of heavy precipitation days (R10) decreasing. When the dry–wet variations was divided into the different sub-periods, the climatic dry–wet changes of each index demonstrated more inconsistency and complexity, but most indices in the first sub-period from 1960 to the late 1970s could be regarded as a wet high-oscillation phase, the second sub-period after the early 1980s was a relatively dry low-oscillation phase, and the third sub-period after the late 1990s or early 21st century was a dry medium-oscillation phase. It is worth noting that most extreme indices had an obvious positive linear trend in the third sub-period, which means that in the last 20 years, the precipitation extremes showed an increasing trend. This study could provide a certain scientific reference for regional climate change detection, water resources management, and disaster prevention in the HJLB and similar endorheic basins or inland arid regions.


2014 ◽  
Vol 27 (23) ◽  
pp. 8707-8723 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Masahiro Watanabe ◽  
Masahide Kimoto ◽  
Minoru Chikira

Abstract The authors demonstrate that an appropriate treatment of convective entrainment is essential for determining spatial distributions of and temporal variations in precipitation. Four numerical experiments are performed using atmospheric models with different entrainment characteristics: a control experiment (Ctl), a no-entrainment experiment (NoEnt), an original Arakawa–Schubert experiment (AS), and an AS experiment with a simple empirical suppression of convection depending on cloud-layer humidity (ASRH). The fractional entrainment rates of AS and ASRH are constant for each cloud type and are very small in the lower troposphere compared with those in the Ctl, in which half of the buoyancy-generated energy is consumed by entrainment. Spatial and temporal variations in the observed precipitation are satisfactorily reproduced in the Ctl, but their amplitudes are underestimated with a so-called double intertropical convergence zone bias in the NoEnt and AS. The spatial variation is larger in the Ctl because convection is more active over humid ascending regions and more suppressed over dry subsidence regions. Feedback processes involving convection, the large-scale circulation, free tropospheric moistening by congestus, and radiation enhance the variations. The temporal evolution of precipitation events is also more realistic in the Ctl, because congestus moistens the midtroposphere, and large precipitation events occur once sufficient moisture is available. The large entrainment in the lower troposphere, increasing free tropospheric moistening by congestus and enhancing the coupling of convection to free tropospheric humidity, is suggested to be important for the realistic spatial and temporal variations.


Sign in / Sign up

Export Citation Format

Share Document