Physiochemistry characteristics and sources of submicron aerosols at the background area of North China Plain: Implication of air pollution control in heating season

2021 ◽  
Vol 249 ◽  
pp. 105291
Author(s):  
Yingchao Yan ◽  
Zirui Liu ◽  
Wenkang Gao ◽  
Jiayun Li ◽  
Xinghua Zhang ◽  
...  
2021 ◽  
Vol 21 (9) ◽  
pp. 7023-7037
Author(s):  
Yan Xiang ◽  
Tianshu Zhang ◽  
Chaoqun Ma ◽  
Lihui Lv ◽  
Jianguo Liu ◽  
...  

Abstract. China has made great efforts to monitor and control air pollution in the past decade. Comprehensive characterization and understanding of pollutants in three-dimensions are, however, still lacking. Here, we used data from an observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations combined with a data assimilation technique to conduct a comprehensive analysis of extreme heavy aerosol pollution (HAP) over the North China Plain (NCP) from November–December 2017. During the studied period, the maximum hourly mass concentration of surface PM2.5 reached ∼390 µg m−3. After assimilation, the correlation between model results and the independent observation sub-dataset was ∼50 % higher than that without the assimilation, and the root mean square error was reduced by ∼40 %. From pollution development to dissipation, we divided the HAP in the NCP (especially in Beijing) into four phases: an early phase (EP), a transport phase (TP), an accumulation phase (AP), and a removal phase (RP). We then analyzed the evolutionary characteristics of PM2.5 concentration during different phases on the surface and in 3-D space. We found that the particles were mainly transported from south to north at a height of 1–2 km (during EP and RP) and near the surface (during TP and AP). The amounts of PM2.5 advected into Beijing with the maximum transport flux intensity (TFI) were through the pathways in the relative order of the southwest > southeast > east pathways. The dissipation of PM2.5 in the RP stage (with negative TFI) was mainly from north to south with an average transport height of ∼1 km above the surface. Our results quantified the multi-dimensional distribution and evolution of PM2.5 concentration over the NCP, which may help policymakers develop efficient air pollution control strategies.


2021 ◽  
Author(s):  
Yan Xiang ◽  
Tianshu Zhang ◽  
Chaoqun Ma ◽  
Lihui Lv ◽  
Jianguo Liu ◽  
...  

Abstract. China has made great efforts to monitor and control air pollution in the past decade. Comprehensive characterization and understanding of pollutants in three-dimension (3-D) are, however, still lacking. Here, we used data from an observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations, combined with a data assimilation technique, to conduct a comprehensive analysis of an extreme heavy aerosol pollution (HAP) over the North China Plain (NCP) from November–December 2017. During the studied period, the maximum hourly mass concentration of surface PM2.5 reached ~390 μg m−3. After assimilation, the correlation between model results and the independent observation sub-dataset was ~50 % higher than the that without the assimilation, and the root mean square error was reduced by ~40 %. From pollution development to dissipation, we divided the HAP in the NCP (especially in Beijing) into four phases – an early phase (EP), a transport phase (TP), an accumulation phase (AP), and a removal phase (RP). We then analyzed the evolutionary characteristics of PM2.5 concentration during different phases on the surface and in 3-D space. We found that the particles were mainly transported from south to north at a height of 1–2 km (during EP and RP) and near the surface (during TP and AP). The amounts of PM2.5 advected into Beijing with the maximum transport flux intensity (TFI) were through the pathways in the relative order of the southwest > southeast > east pathways. The dissipation of PM2.5 in the RP stage (with negative TFI) was mainly from north to south, with an average transport height of ~1 km above the surface. Our results quantified the multi-dimensional distribution and evolution of PM2.5 concentration over the NCP, which may help policymakers develop efficient air pollution control strategies.


2021 ◽  
Vol 14 (2) ◽  
pp. 116-128
Author(s):  
Wenjun Yan

Abstract In 2015, the All-China Environment Federation v Dezhou Jinghua Group Zhenhua Corporation Limited case was the first civil environmental public interest litigation (CEPIL) against air pollution in China. Constituting a milestone in the field of air pollution control in China, this case (i) confirms the eligibility of a non-governmental organisation (NGO) to file civil public interest litigations; (ii) discusses remedies for the ecological destruction caused by air pollution; (iii) assesses the ecological and environmental damage using the ‘virtual restoration cost’ method; and (iv) uses public apology as an innovative way for Zhenhua to assume liability. By applying and interpreting several important rules under the Environmental Protection Law of China (EPLC) for the first time, this case sets an example for future CEPILs against air pollution in China.


2021 ◽  
Vol 305 ◽  
pp. 127093
Author(s):  
Yao Tao ◽  
Yunna Wu ◽  
Jianli Zhou ◽  
Man Wu ◽  
Shiman Wang ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6600
Author(s):  
Jing Li ◽  
Lipeng Hou ◽  
Lin Wang ◽  
Lina Tang

The Chinese government has implemented a number of environmental policies to promote the continuous improvement of air quality while considering economic development. Scientific assessment of the impact of environmental policies on the relationship between air pollution and economic growth can provide a scientific basis for promoting the coordinated development of these two factors. This paper uses the Tapio decoupling theory to analyze the relationship between regional economic growth and air pollution in key regions of air pollution control in China—namely, the Beijing–Tianjin–Hebei region and surrounding areas (BTHS), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)—based on data of GDP and the concentrations of SO2, PM10, and NO2 for 31 provinces in China from 2000 to 2019. The results show that the SO2, PM10, and NO2 pollution in the key regions show strong and weak decoupling. The findings additionally indicate that government policies have played a significant role in improving the decoupling between air pollution and economic development. The decoupling between economic growth and SO2 and PM10 pollution in the BTHS, YRD, and PRD is better than that in other regions, while the decoupling between economic growth and NO2 pollution has not improved significantly in these regions. To improve the relationship between economic growth and air pollution, we suggest that the governments of China and other developing countries should further optimize and adjust the structure of industry, energy, and transportation; apply more stringent targets and measures in areas of serious air pollution; and strengthen mobile vehicle pollution control.


Sign in / Sign up

Export Citation Format

Share Document