scholarly journals A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation

2017 ◽  
Vol 1863 (6) ◽  
pp. 1556-1567 ◽  
Author(s):  
Jinglong Zhang ◽  
Linying Xia ◽  
Fen Zhang ◽  
Di Zhu ◽  
Chao Xin ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Liu ◽  
Hong-lin Yin ◽  
Chao Li ◽  
Feng Jiang ◽  
Shi-jun Zhang ◽  
...  

The increase of blood pressure is accompanied by the changes in the morphology and function of vascular endothelial cells. Vascular endothelial injury and hypertension actually interact as both cause and effect. A large number of studies have proved that inflammation plays a significant role in the occurrence and development of hypertension, but the potential mechanism between inflammation and hypertensive endothelial injury is still ambiguous. The purpose of this study was to explore the association between the activation of NLRP3 inflammasome and hypertensive endothelial damage, and to demonstrate the protective effect of sinapine thiocyanate (ST) on endothelia in hypertension. The expression of NLRP3 gene was silenced by tail vein injection of adeno-associated virus (AAVs) in spontaneously hypertensive rats (SHRs), indicating that activation of NLRP3 inflammasome accelerated hypertensive endothelial injury. ST not only protected vascular endothelial function in SHRs by inhibiting the activation of NLRP3 inflammasome and the expression of related inflammatory mediators, but also improved AngII-induced huvec injury. In summary, our results show that alleviative NLRP3 inflammasome activation attenuates hypertensive endothelial damage and ST ameliorates vascular endothelial dysfunction in hypertension via inhibiting activation of the NLRP3 inflammasome.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Stefany B Cau ◽  
Marcondes da Silva ◽  
Nathanne d Ferreira ◽  
Rita C Tostes ◽  
Thiago Bruder-Nascimento

The NLRP3 inflammasome is a multimeric protein complex constituted by NLRP3, Asc and Capase-1 (Casp1). It triggers an inflammatory response by releasing the pro-inflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome is expressed in different cells and its activation has been associated with several diseases including atherosclerosis and hypertension. Herein we tested the hypothesis that angiotensin II (AngII) induces vascular damage by activating the NLPR3 inflammasome in the vasculature. C57BL/6J male mice (Ctrl) and Casp-1 deficient mice (Casp1-/-) were treated with AngII (490 ng/min/kg/14 days by osmotic mini pump). In Ctrl mice, AngII treatment impaired the vascular relaxation to acetylcholine in mesenteric arteries, increased aorta media thickness [Ctrl: 49.4 ± 2.5 vs AngII: 62.3 ± 2.3* (μm), *P<0.05] and cross-sectional area [Ctrl: 0.11 ± 0.1 vs AngII: 0.15 ± 0.2* (mm), *P<0.05] and triggered NLRP3 inflammasome activation in aorta and mesenteric arteries, analyzed by caspase-1 cleavage and IL-1B maturation via western blot and casp1 activity - FAM-FLICA assay. Fascinatingly, Casp1-/- mice were protected from AngII-induced endothelial dysfunction and vascular remodeling. Furthermore, AngII (0.1uM) incubation, combined or not with lipopolysaccharide (500 ng.ml –1 ultrapure) or Nigericin (20 μM), elevated Casp1 cleavage and IL-1B maturation in Rat Aortic Smooth Muscle Cells (RASMC). Moreover, AngII elevated PCNA (~2.5-fold) and CyclinD1 (~2.1-fold) protein expression and induced vascular migration and proliferation measured by scratch assay and cell counting kit-8 (CCK-8) assay respectively. Interestingly NLRP3 antagonist incubation (MCC950, 1uM) abolished PCNA expression and attenuated the vascular migration and proliferation produced by AngII incubation. Our data suggest that AngII induces vascular damage by activating NLPR3 inflammasome directly in the vasculature. We place this innate immune receptor as a master regulator of the vascular phenotype and as a target for therapeutic strategies for vascular diseases. Future studies will be helpful providing a better understanding into the molecular mechanism of NLRP3 inflammasome activation and regulation in the control of vascular diseases.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Baochen Bai ◽  
Yanyan Yang ◽  
Qi Wang ◽  
Min Li ◽  
Chao Tian ◽  
...  

Abstract Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.


2014 ◽  
Vol 92 (4) ◽  
pp. 599-606 ◽  
Author(s):  
Haixia Yang ◽  
Lei Xiao ◽  
Yue Yuan ◽  
Xiaoqin Luo ◽  
Manli Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document