scholarly journals Comparison of the lymphocyte response to interval exercise versus continuous exercise in recreationally trained men

Author(s):  
Eliott Arroyo ◽  
Emily C. Tagesen ◽  
Tricia L. Hart ◽  
Brandon A. Miller ◽  
Adam R. Jajtner
2017 ◽  
Vol 13 (2) ◽  
pp. 403-410 ◽  
Author(s):  
Victor Araújo Ferreira Matos ◽  
Daniel Costa de Souza ◽  
Rodrigo Alberto Vieira Browne ◽  
Victor Oliveira Albuquerque dos Santos ◽  
Eduardo Caldas Costa ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Ana Paula Trussardi Fayh ◽  
Victor Araújo Ferreira Matos ◽  
Daniel Costa de Souza ◽  
Victor Oliveira Albuquerque dos Santos ◽  
Cristiane da Silva Ramos Marinho ◽  
...  

Respirology ◽  
2021 ◽  
Author(s):  
Leona M. Dowman ◽  
Anthony K. May ◽  
Narelle S. Cox ◽  
Norman R. Morris ◽  
Atsuhito Nakazawa ◽  
...  

2019 ◽  
Vol 119 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Flávia C. Pimenta ◽  
Fábio Tanil Montrezol ◽  
Victor Zuniga Dourado ◽  
Luís Fernando Marcelino da Silva ◽  
Gabriela Alves Borba ◽  
...  

2019 ◽  
Vol 44 (5) ◽  
pp. 557-566 ◽  
Author(s):  
Penelope Larsen ◽  
Frank Marino ◽  
Kerri Melehan ◽  
Kym J. Guelfi ◽  
Rob Duffield ◽  
...  

The aim of this study was to compare the effect of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on sleep characteristics, appetite-related hormones, and eating behaviour. Eleven overweight, inactive men completed 2 consecutive nights of sleep assessments to determine baseline (BASE) sleep stages and arousals recorded by polysomnography (PSG). On separate afternoons (1400–1600 h), participants completed a 30-min exercise bout: either (i) MICE (60% peak oxygen consumption) or (ii) HIIE (60 s of work at 100% peak oxygen consumption: 240 s of rest at 50% peak oxygen consumption), in a randomised order. Measures included appetite-related hormones (acylated ghrelin, leptin, and peptide tyrosine tyrosine) and glucose before exercise, 30 min after exercise, and the next morning after exercise; PSG sleep stages; and actigraphy (sleep quantity and quality); in addition, self-reported sleep and food diaries were recorded until 48 h after exercise. There were no between-trial differences for time in bed (p = 0.19) or total sleep time (p = 0.99). After HIIE, stage N3 sleep was greater (21% ± 7%) compared with BASE (18% ± 7%; p = 0.02). In addition, the number of arousals during rapid eye movement sleep were lower after HIIE (7 ± 5) compared with BASE (11 ± 7; p = 0.05). Wake after sleep onset was lower following MICE (41 min) compared with BASE (56 min; p = 0.02). Acylated ghrelin was lower and glucose was higher at 30 min after HIIE when compared with MICE (p ≤ 0.05). There were no significant differences between conditions in terms of total energy intake (p ≥ 0.05). HIIE appears to be more beneficial than MICE for improving sleep quality and inducing favourable transient changes in appetite-related hormones in overweight, inactive men. However, energy intake was not altered regardless of exercise intensity.


2011 ◽  
Vol 14 (3) ◽  
pp. 373-378 ◽  
Author(s):  
S. Kowalik ◽  
W. Kędzierski

The effect of interval versus continuous exercise on plasma leptin and ghrelin concentration in young trottersThe effect of interval vs. continuous exercise on plasma leptin and ghrelin concentration in young Standardbred horses was studied. The experiment was conducted on 27 trotters, in the age between 2 and 3 years. They were divided into two groups according to the type of exercise. Blood samples were collected through jugular venipuncture in the following experimental conditions: at rest, immediately after exercise and 30 minutes after the end of the effort. Plasma leptin and ghrelin concentrations were determined using RIA tests. The continuous exercise induced an increase in plasma leptin concentration whereas the interval type of exercise did not influence the level of this hormone (3.47 ± 0.78 vs. 4.07 ± 0.94 and 2.31 ± 0.15 vs. 2.36 ± 0.21 ng/mL, respectively). The plasma ghrelin concentration measured after the continuous exercise, significantly increased (720 ± 27.4 vs. 814 ± 13.8; p ≤ 0.05) whereas concentration of this hormone assessed after the interval exercise, significantly dropped (982 ± 56.5 vs. 842 ± 35.6 pg/mL; p ≤ 0.05). The changes in plasma ghrelin concentration measured after the end of the effort correlated inversely with blood lactic acid concentration. In conclusion, the obtained results showed that medium-intensive type of exercise, such as trot, interval or continuous, slightly affected plasma leptin level but significantly affected plasma ghrelin concentration in young Standardbred trotters.


Sign in / Sign up

Export Citation Format

Share Document