acylated ghrelin
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 50)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Tommy Slater ◽  
William J. A. Mode ◽  
John Hough ◽  
Ruth M. James ◽  
Craig Sale ◽  
...  

Abstract Purpose This study aimed to assess the effects of consuming a very-low-energy placebo breakfast on subsequent appetite and lunch energy intake. Methods Fourteen healthy males consumed water-only (WAT), very-low-energy, viscous placebo (containing water, low-calorie flavoured squash, and xanthan gum; ~ 16 kcal; PLA), and whole-food (~ 573 kcal; FOOD) breakfasts in a randomised order. Subjects were blinded to the energy content of PLA and specific study aims. Venous blood samples were collected pre-breakfast, 60- and 180-min post-breakfast to assess plasma acylated ghrelin and peptide tyrosine tyrosine concentrations. Subjective appetite was measured regularly, and energy intake was assessed at an ad libitum lunch meal 195-min post-breakfast. Results Lunch energy intake was lower during FOOD compared to WAT (P < 0.05), with no further differences between trials (P ≥ 0.132). Cumulative energy intake (breakfast plus lunch) was lower during PLA (1078 ± 274 kcal) and WAT (1093 ± 249 kcal), compared to FOOD (1554 ± 301 kcal; P < 0.001). Total area under the curve (AUC) for hunger, desire to eat and prospective food consumption were lower, and fullness was greater during PLA and FOOD compared to WAT (P < 0.05). AUC for hunger was lower during FOOD compared to PLA (P < 0.05). During FOOD, acylated ghrelin was suppressed compared to PLA and WAT at 60 min (P < 0.05), with no other hormonal differences between trials (P ≥ 0.071). Conclusion Consuming a very-low-energy placebo breakfast does not alter energy intake at lunch but may reduce cumulative energy intake across breakfast and lunch and attenuate elevations in subjective appetite associated with breakfast omission. Trial registration NCT04735783, 2nd February 2021, retrospectively registered.


2021 ◽  
Vol 5 (4) ◽  
pp. 01-06
Author(s):  
Vicente Beltrán Campos ◽  
Reyna-Echeveste EI

Interruption or lack of sleep has been linked to chronic degenerative diseases including obesity, which has tripled its figures worldwide in the last 40 years according to data from the world Health organization (WHO). Obesity associated with lack of sleep affects the Circadian rhythm which is responsible for synchronizing the energy balance during the sleep- wake cycle, hormonal secretion, homeostasis of food/energy, among the others. The aim of the study was to determine plasma levels of acylated ghrelin in obese young adults with sleep deprivation to plasma levels of acylated ghrelin in obese Young Adults. Study was carried out a total of 56 young adults with obesity, one of the groups had the condition of lack of sleep, n = 28 per group, to determine the relationship between hours of sleep levels of acylated ghrelin Spearman's correlation test was applied, a negative correlation of Rho = -0.293 and p = 0.028 was found the results obtained suggest that lack of sleep may be a factor that alters hormonal regulation and promotes obesity.


Nutrition ◽  
2021 ◽  
Vol 87-88 ◽  
pp. 111315
Author(s):  
G. Gortan Cappellari ◽  
A. Semolic ◽  
R. Caporale ◽  
F. Kharrat ◽  
M. Zanetti ◽  
...  

2021 ◽  
Vol 7 (3) ◽  

Objectives: This study tested the effects of acylated (AG and un-acylated ghrelin (UAG) on hepatic lipid synthesis and insulin resistance (IR) from prospective to their effect on endoplasmic reticulum stress and investigated the possible underlying mechanisms. Methods: Healthy rats were divided as 4 groups (n=12/each) as control, control + AG, control + UAG, and control + AG + UAG (1:1). GA or UAG were given subcutaneously (200 ng/kg/each) for 8 weeks. Results: AG increased fasting levels of glucose and insulin resistance, increased hepatic glucose production, and impaired glucose and insulin tolerance. Besides, it increased serum levels of free fatty acids (FFAs), enhanced serum and hepatic levels of triglycerides and cholesterol, and increased lipid deposition in the livers of rats. Concomitantly, it stimulated the mRNA levels of SREBP1/2, fatty acid synthase, and protein levels of all arms of ER stress including Xbp-1, CHOP, ATF-6, and p-eIF2α, thus activating lipid synthesis and ER stress. It also reduced protein levels of p-IRS (Tyr612), p-Akt (Ser307), and increased levels of ROS, TNF-α, IL-6, and protein levels of cleaved caspase-12, p-IRS (Ser307), and p-JNK (The183/Tyr186) in rats’ livers. Administration of UAG alone or in combination with AG produced contradictory effects. However, both AG and UAG significantly increased mRNA levels of AMPK and PPARα suggesting FAs oxidation. Conclusion: AG induces hepatic steatosis and suppresses hepatic insulin signaling mainly by inducing peripheral IR that is associated with hepatic oxidative stress, inflammation, and ER stress. However, UAG alone or in combination exerts opposite effects.


Author(s):  
Zahide Karaca ◽  
Recep C. Yuksel ◽  
Gulsah Gunes Sahin ◽  
Neslihan Sungur ◽  
Sahin Temel ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 41-46
Author(s):  
Petr D. Shabanov ◽  
Aleksandra A. Blazhenko ◽  
Aleksandr S. Devyashin ◽  
Platon P. Khokhlov ◽  
Andrei A. Lebedev

The aim: of the study was to investigate the level of ghrelin in various brain structures during a stress response in Zebrafish to a predator, to evaluate this indicator as a potential biomarker of stress, and the effect of a benzodiazepine tranquilizer (phenazepam) on stress-induced changes Materials and methods: The object of the study was Zebrafish, or Danio rerio wild type, which was subjected to stress by exposure to a predator Hypsophrys nicaraguensis from the cichlid family. In the tail tissue, the level of cortisol was determined, in the brain – the level of total (acylated and non-acylated) ghrelin by the method of enzyme-linked immunosorbent assay. The benzodiazepine anxiolytic phenazepam (1 mg/L), a ghrelin antagonist [D-Lys3]-GHRP-6 (0.333 mg/l) and corticotropin-releasing hormone (CRF; 0.4 mg/L) were used as the pharmacological agents. Results and discussion: Exposure to a predator, just as administering CRF, more than doubled the level of cortisol in the tail tissue. [D-Lys3]-GHRP-6 and phenazepam prevented an increase in a tissue cortisol level. Simultaneously, in the medulla oblongata and cerebellum, the phylogenetically most ancient structures, rather than in the forebrain (telencephalon) or in the midbrain (corpora bigemia), the level of ghrelin was recorded about 500 pg/g of total protein. In response to exposure to a predator, the level of ghrelin increased in the forebrain and midbrain to nanogram concentrations and moderately decreased in the cerebellum. The effect was prevented by phenazepam and [D-Lys3]-GHRP-6. Conclusion: Increases in ghrelin in the brain in response to stressful situations can be seen as a functional brain biomarker of stress, along with increased levels of tissue cortisol levels. Both of these effects are prevented by both the ghrelin antagonist and the benzodiazepine tranquilizer. The mechanism of action of the tranquilizer is a functional antagonism between the GABAergic system of the brain and the ghrelin system.


Stresses ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 16-29
Author(s):  
Christine Fahrngruber-Velasquez ◽  
Kalina Duszka ◽  
Jürgen König

Stress, mood, and eating behavior play an important role in appetite and weight regulation. In particular, ghrelin, as the only known orexigenic hormone, has been suggested to be an influential mediator in food intake responses to stress. The exact role of ghrelin in the hypothalamic–pituitary–adrenal axis is still unknown and further challenged by the psychological aspects of stress and eating behavior. This study aimed to assess the effect of chronic stress and subjective concern about eating on acute stress-induced changes in acylated ghrelin. In a 2-day study, sixteen healthy male participants were confronted with a stressful situation as well as a control situation. Additional measurements of heart rate, subjective hunger ratings, and subjective mood ratings were made to assess successful acute stress induction. The linear mixed model approach revealed a significant effect of acute stress on acylated ghrelin for a study-day*chronic-stress interaction (p < 0.001). Concern about eating did not affect acylated ghrelin levels after acute stress exposure. The significant interaction showed that lower chronic stress exposure was associated with a stronger acylated ghrelin response after acute stress exposure versus control condition. At the same time, participants with higher chronic stress exposure showed a blunted acylated ghrelin response after acute stress exposure compared to the control situation. Our findings indicate that chronic stress exposure can influence acylated ghrelin response after acute stress encounters, possibly affecting subsequent food intake and explaining the often diverse outcome in measurements of acute stress responses.


Sign in / Sign up

Export Citation Format

Share Document