Functional interaction between Smad, CREB binding protein, and p68 RNA helicase

2004 ◽  
Vol 324 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Dennis R. Warner ◽  
Vasker Bhattacherjee ◽  
Xiaolong Yin ◽  
Saurabh Singh ◽  
Partha Mukhopadhyay ◽  
...  
2000 ◽  
Vol 20 (23) ◽  
pp. 8933-8943 ◽  
Author(s):  
Noriko Shikama ◽  
Ho Man Chan ◽  
Marija Krstic-Demonacos ◽  
Linda Smith ◽  
Chang-Woo Lee ◽  
...  

ABSTRACT The p300/CREB-binding protein (CBP) family of proteins consists of coactivators that influence the activity of a wide variety of transcription factors. Although the mechanisms that allow p300/CBP proteins to achieve transcriptional control are not clear, it is believed that the regulation of chromatin is an important aspect of the process. Here, we describe a new level of p300-dependent control mediated through the functional interaction between p300/CBP and members of the family of nucleosome assembly proteins (NAP), which includes NAP1, NAP2, and TAF1. We find that NAP proteins, which have previously been implicated in the regulation of transcription factor binding to chromatin, augment the activity of different p300 targets, including p53 and E2F, through a process that is likely to involve the physical interaction between p300 and NAP. NAP proteins can form oligomers, and the results show that NAP proteins can bind to both core histones and p300 coactivator proteins, perhaps in a multicomponent ternary complex. We also provide data in support of the idea that histones can influence the interaction between p300 and NAP protein. These results argue that NAP is a functionally important component of the p300 coactivator complex and suggest that NAP may serve as a point of integration between transcriptional coactivators and chromatin.


Cell Cycle ◽  
2006 ◽  
Vol 5 (18) ◽  
pp. 2146-2152 ◽  
Author(s):  
Colm M. Ryan ◽  
Janet C. Harries ◽  
Karin B. Kindle ◽  
Hilary M. Collins ◽  
David M. Heery

2021 ◽  
Vol 48 (3) ◽  
pp. 2117-2122
Author(s):  
Hossein Sadeghi ◽  
Sahra Esmkhani ◽  
Reihaneh Pirjani ◽  
Mona Amin-Beidokhti ◽  
Milad Gholami ◽  
...  

2003 ◽  
Vol 369 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Antonio De LUCA ◽  
Anna SEVERINO ◽  
Paola De PAOLIS ◽  
Giuliano COTTONE ◽  
Luca De LUCA ◽  
...  

Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR—MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the α-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR—retenoid X receptor (RxR)—MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR—RxR—MEF2A—p300 but not by TR—RxR—MEF2A. Our data suggested that p300 can bind and modulate the activity of TR—RxR—MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR—RxR—MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A.


FEBS Letters ◽  
2016 ◽  
Vol 590 (18) ◽  
pp. 3213-3220 ◽  
Author(s):  
Christian Maurer ◽  
Tobias Winter ◽  
Siwei Chen ◽  
Hsiu-Cheng Hung ◽  
Frank Weber

2003 ◽  
Vol 278 (18) ◽  
pp. 15727-15734 ◽  
Author(s):  
Qing Lu ◽  
Amanda E. Hutchins ◽  
Colleen M. Doyle ◽  
James R. Lundblad ◽  
Roland P. S. Kwok

Sign in / Sign up

Export Citation Format

Share Document