Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode

2007 ◽  
Vol 363 (3) ◽  
pp. 554-560 ◽  
Author(s):  
Maria Letizia Barreca ◽  
Francesco Ortuso ◽  
Nunzio Iraci ◽  
Laura De Luca ◽  
Stefano Alcaro ◽  
...  
2006 ◽  
Vol 71 (3) ◽  
pp. 893-901 ◽  
Author(s):  
Allison A. Johnson ◽  
Christophe Marchand ◽  
Sachindra S. Patil ◽  
Roberta Costi ◽  
Roberto Di Santo ◽  
...  

2006 ◽  
Vol 103 (26) ◽  
pp. 10080-10085 ◽  
Author(s):  
L. Q. Al-Mawsawi ◽  
V. Fikkert ◽  
R. Dayam ◽  
M. Witvrouw ◽  
T. R. Burke ◽  
...  

2019 ◽  
Vol 16 (8) ◽  
pp. 868-881
Author(s):  
Yueping Wang ◽  
Jie Chang ◽  
Jiangyuan Wang ◽  
Peng Zhong ◽  
Yufang Zhang ◽  
...  

Background: S-dihydro-alkyloxy-benzyl-oxopyrimidines (S-DABOs) as non-nucleoside reverse transcriptase inhibitors have received considerable attention during the last decade due to their high potency against HIV-1. Methods: In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) of a series of 38 S-DABO analogues developed in our lab was studied using Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The Docking/MMFF94s computational protocol based on the co-crystallized complex (PDB ID: 1RT2) was used to determine the most probable binding mode and to obtain reliable conformations for molecular alignment. Statistically significant CoMFA (q2=0.766 and r2=0.949) and CoMSIA (q2=0.827 and r2=0.974) models were generated using the training set of 30 compounds on the basis of hybrid docking-based and ligand-based alignment. Results: The predictive ability of CoMFA and CoMSIA models was further validated using a test set of eight compounds with predictive r2 pred values of 0.843 and 0.723, respectively. Conclusion: The information obtained from the 3D contour maps can be used in designing new SDABO derivatives with improved HIV-1 inhibitory activity.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


Author(s):  
Basma Abdi ◽  
Mouna Chebbi ◽  
Marc Wirden ◽  
Elisa Teyssou ◽  
Sophie Sayon ◽  
...  

Abstract Background Little is known about HIV-1 integrase inhibitor resistance in the CNS. Objectives This study aimed to evaluate integrase inhibitor resistance in CSF, as a marker of the CNS, and compare it with the resistance in plasma. Methods HIV integrase was sequenced both in plasma and CSF for 59 HIV-1 patients. The clinical and biological data were collected from clinical routine care. Results Among the 59 HIV-1 patients, 32 (54.2%) were under antiretroviral (ARV) treatment. The median (IQR) HIV-1 RNA in the plasma of viraemic patients was 5.32 (3.85–5.80) and 3.59 (2.16–4.50) log10 copies/mL versus 4.79 (3.56–5.25) and 3.80 (2.68–4.33) log10 copies/mL in the CSF of ARV-naive and ARV-treated patients, respectively. The patients were mainly infected with non-B subtypes (72.2%) with the most prevalent recombinant form being CRF02_AG (42.4%). The HIV-1 integrase sequences from CSF presented resistance mutations for 9/27 (33.3%) and 8/32 (25.0%) for ARV-naive (L74I, n = 3; L74I/M, n = 1; T97A, n = 1; E157Q, n = 4) and ARV-treated (L74I, n = 6; L74M, n = 1; T97A, n = 1; N155H, n = 1) patients, respectively. Integrase inhibitor resistance mutations in CSF were similar to those in plasma, except for 1/59 patients. Conclusions This work shows similar integrase inhibitor resistance profiles in the CNS and plasma in a population of HIV-1 viraemic patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Éva Áy ◽  
Attila Hunyadi ◽  
Mária Mezei ◽  
János Minárovits ◽  
Judit Hohmann

Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2), together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24 core protein levels in the supernatants of HIV-1 infected MT-4 and MT-2 cell cultures. The compounds showed mild to weak cytotoxic activities on the host cells; herbacitrin was the strongest in this regard (CC50=27.8 and 63.64 μM on MT-4 and MT-2 cells, respectively). In nontoxic concentrations, herbacitrin and quercetin reduced HIV-1 replication, whereas gossypitrin was ineffective. Herbacitrin was found to inhibit reverse transcriptase at 21.5 μM, while it was a more potent integrase inhibitor already active at 2.15 μM. Therefore, our observations suggest that herbacitrin exerts antiretroviral activity through simultaneously acting on these two targets of HIV-1 and that integrase inhibition might play a major role in this activity.


2011 ◽  
Vol 49 (4) ◽  
pp. 1631-1634 ◽  
Author(s):  
T. P. Young ◽  
G. Cloherty ◽  
S. Fransen ◽  
L. Napolitano ◽  
P. Swanson ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Prats ◽  
Ignacio Martínez-Zalacaín ◽  
Beatriz Mothe ◽  
Eugènia Negredo ◽  
Núria Pérez-Álvarez ◽  
...  

AbstractIntegrase strand transfer inhibitors (INSTI) are a main component of the current antiretroviral regimens recommended for treatment of HIV infection. However, little is known about the impact of INSTI on neurocognition and neuroimaging. We developed a prospective observational trial to evaluate the effects of INSTI-based antiretroviral therapy on comprehensive brain outcomes (cognitive, functional, and imaging) according to the time since HIV-1 acquisition. We recruited men living with HIV who initiated antiretroviral therapy with INSTI < 3 months since the estimated date of HIV-1 acquisition (n = 12) and > 6 months since estimated date of HIV-1 acquisition (n = 15). We also recruited a group of matched seronegative individuals (n = 15). Assessments were performed at baseline (before initiation of therapy in HIV arms) and at weeks 4 and 48. Baseline cognitive functioning was comparable between the arms. At week 48, we did not find cognitive differences between starting therapy with INSTI earlier than 3 months or later than 6 months after acquisition of HIV-1 infection. Functional status was poorer in individuals diagnosed earlier. This effect recovered 48 weeks after initiation of therapy. Regarding brain imaging, we found that men living with HIV initiating antiretroviral therapy later experienced a greater decrease in medial orbitofrontal cortex over time, with expected negative repercussions for decision-making tasks.


2021 ◽  
Vol 17 ◽  
Author(s):  
Nafiseh Karimi ◽  
Rouhollah Vahabpour Roudsari ◽  
Zahra Hajimahdi ◽  
Afshin Zarghi

Background: Integrase enzyme is a validated drug target to discover novel structures as anti-HIV-1 agents. Objective: Novel series of thioimidazolyl diketo acid derivatives characterizing various substituents at N-1 and 2-thio positions of central ring were developed as HIV-1 integrase inhibitors. Results: The obtained molecules were evaluated in the enzyme assay, displaying promising integrase inhibitory activity with IC50 values ranging from 0.9 to 7.7 M. The synthesized compounds were also tested for antiviral activity and cytotoxicity using HeLa cells infected by the single-cycle replicable HIV-1 NL4-3. Conclusion: The most potent compound was 18i with EC50=19 µM, IC50 0.9 µM and SI= 10.5. Docking studies indicated that the binding mode of the active molecule is well aligned with the known HIV-1 integrase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document