Characterization of vegetative storage protein (VSP) and low molecular proteins induced by water deficit in stolon of white clover

2014 ◽  
Vol 443 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Bok-Rye Lee ◽  
Dong-Gi Lee ◽  
Jean-Christophe Avice ◽  
Tae-Hwan Kim
2007 ◽  
Vol 129 (3) ◽  
pp. 567-577 ◽  
Author(s):  
Estelle Goulas ◽  
Céline Richard-Molard ◽  
Frédérik Le Dily ◽  
Christelle Le Dantec ◽  
Jérome Ozouf ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


2004 ◽  
Vol 31 (8) ◽  
pp. 847 ◽  
Author(s):  
Tae-Hwan Kim ◽  
Bok-Rye Lee ◽  
Woo-Jin Jung ◽  
Kil-Yong Kim ◽  
Jean-Christophe Avice ◽  
...  

The kinetics of protein incorporation from newly-absorbed nitrogen (N, de novo protein synthesis) was estimated by 15N tracing in 18-week-old white clover plants (Trifolium repens L. cv. Regal) during 7 d of water-deficit treatment. The physiological relationship between kinetics and accumulation of proline and ammonia in response to the change in leaf-water parameters was also assessed. All leaf-water parameters measured decreased gradually under water deficit. Leaf and root dry mass was not significantly affected during the first 3 d when decreases in leaf-water parameters were substantial. However, metabolic parameters such as total N, proline and ammonia were significantly affected within 1 d of commencement of water-deficit treatment. Water-deficit treatment significantly increased the proline and NH3–NH4+ concentrations in both leaves and roots. There was a marked reduction in the amount of N incorporated into the protein fraction from the newly absorbed N (NANP) in water-deficit stressed plants, particularly in leaf tissue. This reduction in NANP was strongly associated with an increased concentration of NH3–NH4+ in roots (P≤0.05) and proline (P≤0.01) in leaves and roots. These results suggest that proline accumulation may be a sensitive biochemical indicator of plant water status and of the dynamics of de novo protein synthesis in response to stress severity.


2010 ◽  
Vol 48 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Muthappa Senthil-Kumar ◽  
Ramanna Hema ◽  
Thumu Rao Suryachandra ◽  
H.V. Ramegowda ◽  
Ramaswamy Gopalakrishna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document