Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

2014 ◽  
Vol 445 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Hideyuki Kishino ◽  
Hiroki Eguchi ◽  
Keiko Takagi ◽  
Hiroyuki Horiuchi ◽  
Ryouichi Fukuda ◽  
...  
Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


2015 ◽  
Vol 8s1 ◽  
pp. LPI.S31780 ◽  
Author(s):  
Mike F. Renne ◽  
Xue Bao ◽  
Cedric H. De Smet ◽  
Anton I. P. M. De Kroon

Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.


2004 ◽  
Author(s):  
Ιωάννα Βώβου

Σκοπός της διατριβής ήταν η μελέτη της απάντησης των κυττάρων του μονοκυττάριου ευκαρυωτικού οργανισμού Saccharomyces cerevisiae στο ισχυρό θερμικό stress (shock) και η διερεύνηση υποκείμενων ρυθμιστικών παραγόντων και διαδικασιών. Ο S. cerevisiae χρησιμοποιείται ευρέως ως πειραματικό πρότυπο στη βιοϊατρική έρευνα, με αξιόπιστα αποτελέσματα, λόγω των ομόλογων με τους ανώτερους οργανισμούς κυτταρικών λειτουργιών. Η μελέτη του εξελικτικώς συντηρητικού φαινομένου της απάντησης των οργανισμών σε στρεσσογόνα ερεθίσματα που μεταβάλλουν τη φυσιολογική ομοιόσταση επικεντρώνεται σήμερα στη διερεύνηση φυσιολογικών, βιοχημικών, κυτταρικών και μοριακών προσαρμοστικών μηχανισμών.Στη διατριβή διερευνήθηκε ο ρόλος του εξωτερικού περιβάλλοντος κατά την απάντηση στο stress στο σακχαρομύκητα και η συμμετοχή του pH, της de novo πρωτεϊνοσύνθεσης, της ιοντικής ομοιόστασης και της φωσφορυλίωσης καθώς και η προστατευτική και προσαρμοστική απάντηση μετά από επίδραση φαρμάκων που αλληλεπιδρούν με τη HSP90 και τα πυρηνικά οξέα. Οι δραστικές ουσίες χορηγήθηκαν σε υγρές καλλιέργειες της μεταλογαριθμικής φάσης ανάπτυξης (27°C, 22h) του μύκητα, χωρίς (μάρτυρες) ή μετά από έκθεση σε ήπιο θερμικό stress (37°C, 2h, προθερμασμένα κύτταρα), πριν ή κατά την ακόλουθη έκθεση σε θερμικό shock (HS, 53°C, 30min).Τα αποτελέσματα έδειξαν ότι το ελεύθερο κυττάρων υπερκείμενο των ανθεκτικών προθερμασμένων καλλιεργειών αύξησε την επιβίωση των μαρτύρων, με τη συμμετοχή της de novo πρωτεϊνοσύνθεσης, αλλά χωρίς τη συμμετοχή του pHe και του Ca2+e. Η αναστολή της Η+ΑΤΡάσης από την ομεπραζόλη πριν ή κατά το HS προσέδωσε δοσοεξαρτώμενη ανθεκτικότητα στους μάρτυρες, ενώ η αναστολή των διαύλων Κ+ από τα ιόντα τετρααιθυλαμμωνίου οδήγησε σε θερμοανθεκτικότητα μόνο κατά το HS. Η αμιοδαρόνη έδειξε δοσοεξαρτώμενη τοξική επίδραση, ενώ η μεπιβακάίνη δε μετέβαλε την απάντηση. Ο αναστολέας των ΡΡ2Α φωσφατασών οκαδαϊκό οξύ εμφάνισε διφασική τοξική δράση στους μάρτυρες. Κατά τη μη εκλεκτική αναστολή των φωσφατασών από το μολυβδαίνιο, το ελεύθερο κυττάρων υπερκείμενο των ανθεκτικών μη προθερμασμένων καλλιεργειών άσκησε προστατευτική επίδραση στους μάρτυρες κατά το HS, σε αντίθεση με το προερχόμενο από ανθεκτικούς πληθυσμούς μετά από επίδραση του αναστολέα της HSP90 γελνταναμυκίνη ή του αντιμεταβολίτη 5-φθοριουρακίλη.Τα ευρήματα αυτά οδήγησαν στο συμπέρασμα ότι, οι όποιες μεταβολές στο υλικό καλλιέργειας κατά την έκθεση του σακχαρομύκητα σε ήπιο θερμικό stress καθόρισαν, ανεξάρτητα από το pHe, την προστατευτική ικανότητα του εξωκυττάριου μικροπεριβάλλοντος προς όφελος των πληθυσμών που δεν είχαν προετοιμαστεί για να επιβιώσουν υπό συνθήκες ισχυρού shock. Τόσο η παραγωγή προστατευτικών σημάτων κατά το ήπιο θερμικό stress, όσο και η αποδοχή της προστατευτικής επίδρασης υπό συνθήκες ισχυρού shock ήταν εξαρτώμενη από τη de novo πρωτεϊνοσύνθεση. Τέλος, η ομοιόσταση των Η+ και Κ+ έπαιξε αποφασιστικό ρόλο στην επιβίωση κατά το HS, ενώ κατά στην προσαρμοστική απάντηση πιθανώς να εμπλέκονται οι φωσφατάσες ΡΡ2Α, καθώς και γενωμικά γεγονότα, αφού κατά το φαρμακολογικό stress με ουσίες που δρούν άμεσα ή έμμεσα στον πυρήνα παρατηρήθηκε θερμοαντοχή, χωρίς επαγωγή των προστατευτικών ιδιοτήτων του εξωτερικού περιβάλλοντος.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1982 ◽  
Vol 152 (1) ◽  
pp. 111-119
Author(s):  
L F Bisson ◽  
J Thorner

The rate and extent of entry of dTMP were measured in strains of Saccharomyces cerevisiae carrying two new tup mutations (tup5 and tup7) and most of the other tup mutations which have been reported previously by others. The tup7 mutation allowed dramatically greater accumulation of dTMP than any of the other mutations tested. Specific labeling of DNA by [CH3-3H]dTMP, fate of the dTMP pool inside of the cells, and degradation of the dTMP in the culture medium were investigated in strains carrying the tup7 mutation. The extracellular dTMP was not appreciably degraded, and that accumulated intracellularly was readily phosphorylated to dTDP and dTTP. Under optimum labeling conditions, 60 to 80% of the total thymidylate residues in newly synthesized DNA were derived from the exogenously provided dTMP, even in the absence of a block in de novo dTMP biosynthesis. An apparent Km for entry of 2 mM dTMP was found. The tup7 mutation increased permeability to dTMP (and some other 5'-mononucleotides), but did not affect uptake of nucleosides and purine and pyrimidine bases. Uptake of dTMP could be almost completely inhibited by moderate concentrations of Pi. These findings and other observations suggest that entry of dTMP in strains carrying the tup7 mutation is mediated by a permease whose function in normal cells is the transport of Pi.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi271-vi271
Author(s):  
Sophie Fiola ◽  
Eli Ganni ◽  
Rita Lo ◽  
Ka Yee Lok ◽  
Elena Kuzmin ◽  
...  

Abstract High levels of D-2-hydroxyglutarate (D2HG) are found in several types of cancers, most notably low grade gliomas (LGGs). The accumulation of D-2HG contributes to tumorigenesis through a variety of mechanisms including decreased utilization of oxidative phosphorylation and histone hypermethylation. The use of the budding yeast Saccharomyces cerevisiae as a model system to study cancer allows for faster, more efficient elucidation of various molecular mechanisms, including functional genomics via genomic array screening. S. cerevisiae encodes two homologs of the human D-2HG dehydrogenase: the mitochondrial Dld2 and cytosolic Dld3. We detected an increase in the production of D-2HG in the dld3∆ knockout strain by LC-MS. In addition, the dld3∆ knockout strain shows decreased survival and a growth impairment in glucose-containing liquid media. However, this strain did not show a significant growth impairment on glucose or glycerol-containing solid media. Using publicly available Synthetic Genomic Array (SGA) analysis data from TheCellMap.org, we investigated the top negative gene interactions for our dld3 knockout strain. GO analysis of these negative gene interactions showed enrichment of targets locating to the mitochondria, suggesting that the increase of 2-HG leads to mitochondrial impairment, consistent with previous observations in other models of LGGs. The top two targets of the SGA screen were mdm35, a mitochondrial interspace membrane protein involved in assembly of the mitochondrial respiratory chain complex and cdc8, a component of the de novo pyrimidine biosynthesis pathway. Taken together, these results suggest that the dld3∆ knockout strain is an appropriate model in which to study the D-2HG-driven changes that occur during tumorigenesis.


2012 ◽  
Vol 441 (3) ◽  
pp. 789-802 ◽  
Author(s):  
Thomas D. Mullen ◽  
Yusuf A. Hannun ◽  
Lina M. Obeid

Sphingolipid metabolism in metazoan cells consists of a complex interconnected web of numerous enzymes, metabolites and modes of regulation. At the centre of sphingolipid metabolism reside CerSs (ceramide synthases), a group of enzymes that catalyse the formation of ceramides from sphingoid base and acyl-CoA substrates. From a metabolic perspective, these enzymes occupy a unique niche in that they simultaneously regulate de novo sphingolipid synthesis and the recycling of free sphingosine produced from the degradation of pre-formed sphingolipids (salvage pathway). Six mammalian CerSs (CerS1–CerS6) have been identified. Unique characteristics have been described for each of these enzymes, but perhaps the most notable is the ability of individual CerS isoforms to produce ceramides with characteristic acyl-chain distributions. Through this control of acyl-chain length and perhaps in a compartment-specific manner, CerSs appear to regulate multiple aspects of sphingolipid-mediated cell and organismal biology. In the present review, we discuss the function of CerSs as critical regulators of sphingolipid metabolism, highlight their unique characteristics and explore the emerging roles of CerSs in regulating programmed cell death, cancer and many other aspects of biology.


Sign in / Sign up

Export Citation Format

Share Document