Substance P preserves pancreatic β-cells in type 1 and type 2 diabetic mice

2018 ◽  
Vol 499 (4) ◽  
pp. 960-966 ◽  
Author(s):  
Jihyun Um ◽  
Nunggum Jung ◽  
Dongjin Kim ◽  
Sanghyuk Choi ◽  
Sang-Ho Lee ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4381
Author(s):  
Zakiyatul Faizah ◽  
Bella Amanda ◽  
Faisal Yusuf Ashari ◽  
Efta Triastuti ◽  
Rebecca Oxtoby ◽  
...  

Diabetes mellitus (DM) is one of the major causes of death in the world. There are two types of DM—type 1 DM and type 2 DM. Type 1 DM can only be treated by insulin injection whereas type 2 DM is commonly treated using anti-hyperglycemic agents. Despite its effectiveness in controlling blood glucose level, this therapeutic approach is not able to reduce the decline in the number of functional pancreatic β cells. MST1 is a strong pro-apoptotic kinase that is expressed in pancreatic β cells. It induces β cell death and impairs insulin secretion. Recently, a potent and specific inhibitor for MST1, called XMU-MP-1, was identified and characterized. We hypothesized that treatment with XMU-MP-1 would produce beneficial effects by improving the survival and function of the pancreatic β cells. We used INS-1 cells and STZ-induced diabetic mice as in vitro and in vivo models to test the effect of XMU-MP-1 treatment. We found that XMU-MP-1 inhibited MST1/2 activity in INS-1 cells. Moreover, treatment with XMU-MP-1 produced a beneficial effect in improving glucose tolerance in the STZ-induced diabetic mouse model. Histological analysis indicated that XMU-MP-1 increased the number of pancreatic β cells and enhanced Langerhans islet area in the severe diabetic mice. Overall, this study showed that MST1 could become a promising therapeutic target for diabetes mellitus.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134051 ◽  
Author(s):  
Chunbing Zheng ◽  
Wenbo Zhou ◽  
Tongtong Wang ◽  
Panpan You ◽  
Yongliang Zhao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting-Ting Chang ◽  
Liang-Yu Lin ◽  
Jaw-Wen Chen

Systemic inflammation is related to hyperglycemia in diabetes mellitus (DM). C-C chemokine motif ligand (CCL) 4 is upregulated in type 1 & type 2 DM patients. This study aimed to investigate if CCL4 could be a potential target to improve blood sugar control in different experimental DM models. Streptozotocin-induced diabetic mice, Leprdb/JNarl diabetic mice, and C57BL/6 mice fed a high fat diet were used as the type 1 DM, type 2 DM, and metabolic syndrome model individually. Mice were randomly assigned to receive an anti-CCL4 neutralizing monoclonal antibody. The pancreatic β-cells were treated with streptozotocin for in vitro experiments. In streptozotocin-induced diabetic mice, inhibition of CCL4 controlled blood sugar, increased serum insulin levels, increased islet cell proliferation and decreased pancreatic interleukin (IL)-6 expression. In the type 2 diabetes and metabolic syndrome models, CCL4 inhibition retarded the progression of hyperglycemia, reduced serum tumor necrosis factor (TNF)-α and IL-6 levels, and improved insulin resistance via reducing the phosphorylation of insulin receptor substrate-1 in skeletal muscle and liver tissues. CCL4 inhibition directly protected pancreatic β-cells from streptozotocin stimulation. Furthermore, CCL4-induced IL-6 and TNF-α expressions could be abolished by siRNA of CCR2/CCR5. In summary, direct inhibition of CCL4 protected pancreatic islet cells, improved insulin resistance and retarded the progression of hyperglycemia in different experimental models, suggesting the critical role of CCL4-related inflammation in the progression of DM. Future experiments may investigate if CCL4 could be a potential target for blood sugar control in clinical DM.


2017 ◽  
Vol 491 (4) ◽  
pp. 958-965 ◽  
Author(s):  
Nunggum Jung ◽  
Jihyun Um ◽  
Do Yeon Kim ◽  
Maria Jose Dubon ◽  
Yeji Byeon ◽  
...  

2015 ◽  
Vol 224 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Xin-gang Yao ◽  
Xin Xu ◽  
Gai-hong Wang ◽  
Min Lei ◽  
Ling-ling Quan ◽  
...  

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2+ channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Min Shen ◽  
Dongdong Sun ◽  
Weijie Li ◽  
Bing Liu ◽  
Shenxu Wang ◽  
...  

Aim. To investigate the combination effects and mechanisms of valsartan (angiotensin II type 1 receptor blocker) and LAF237 (DPP-IV inhibitor) on prevention against oxidative stress and inflammation injury in db/db mice aorta.Methods. Db/db mice (n=40) were randomized to receive valsartan, LAF237, valsartan plus LAF237, or saline. Oxidative stress and inflammatory reaction in diabetic mice aorta were examined.Results. Valsartan or LAF237 pretreatment significantly increased plasma GLP-1 expression, reduced apoptosis of endothelial cells isolated from diabetic mice aorta. The expression of NAD(P)H oxidase subunits also significantly decreased resulting in decreased superoxide production and ICAM-1 (fold change: valsartan : 7.5 ± 0.7,P<0.05; LAF237: 10.2 ± 1.7,P<0.05), VCAM-1 (fold change: valsartan : 5.2 ± 1.2,P<0.05; LAF237: 4.8 ± 0.6,P<0.05), and MCP-1 (fold change: valsartan: 3.2 ± 0.6, LAF237: 4.7 ± 0.8;P<0.05) expression. Moreover, the combination treatment with valsartan and LAF237 resulted in a more significant increase of GLP-1 expression. The decrease of the vascular oxidative stress and inflammation reaction was also higher than monotherapy with valsartan or LAF237.Conclusion. These data indicated that combination treatment with LAF237 and valsartan acts in a synergistic manner on vascular oxidative stress and inflammation in type 2 diabetic mice.


2014 ◽  
Vol 69 ◽  
pp. 347-356 ◽  
Author(s):  
Hsien-Yi Wang ◽  
Wei-Chih Kan ◽  
Tain-Junn Cheng ◽  
Sung-Hsun Yu ◽  
Liang-Hao Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document