Beta catenin is regulated by its subcellular distribution and mutant huntingtin status in Huntington's disease cell STHdhQ111/HdhQ111

2018 ◽  
Vol 503 (1) ◽  
pp. 359-364 ◽  
Author(s):  
Supratim Ghatak ◽  
Sanghamitra Raha
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shreyaas Aravindan ◽  
Samantha Chen ◽  
Hannaan Choudhry ◽  
Celine Molfetta ◽  
Kuang Yu Chen ◽  
...  

Abstract Osmolytes are organic solutes that change the protein folding landscape shifting the equilibrium towards the folded state. Herein, we use osmolytes to probe the structuring and aggregation of the intrinsically disordered mutant Huntingtin (mHtt) vis-a-vis the pathogenicity of mHtt on transcription factor function and cell survival. Using an inducible PC12 cell model of Huntington’s disease (HD), we show that stabilizing polyol osmolytes drive the aggregation of Htt103QExon1-EGFP from a diffuse ensemble into inclusion bodies (IBs), whereas the destabilizing osmolyte urea does not. This effect of stabilizing osmolytes is innate, generic, countered by urea, and unaffected by HSP70 and HSC70 knockdown. A qualitatively similar result of osmolyte-induced mHtt IB formation is observed in a conditionally immortalized striatal neuron model of HD, and IB formation correlates with improved survival under stress. Increased expression of diffuse mHtt sequesters the CREB transcription factor to repress CREB-reporter gene activity. This repression is mitigated either by stabilizing osmolytes, which deplete diffuse mHtt or by urea, which negates protein–protein interaction. Our results show that stabilizing polyol osmolytes promote mHtt aggregation, alleviate CREB dysfunction, and promote survival under stress to support the hypothesis that lower molecular weight entities of disease protein are relevant pathogenic species in neurodegeneration.


2021 ◽  
pp. 1-13
Author(s):  
Karen A. Sap ◽  
Arzu Tugce Guler ◽  
Aleksandra Bury ◽  
Dick Dekkers ◽  
Jeroen A.A. Demmers ◽  
...  

Background: Huntington’s disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. Objective: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington’s disease pathology. Methods: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). Results: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. Conclusion: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington’s disease pathology.


2016 ◽  
Vol 5 (4) ◽  
pp. 343-346 ◽  
Author(s):  
Alexander P. Osmand ◽  
Terry Jo. Bichell ◽  
Aaron B. Bowman ◽  
Gillian P. Bates

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44273 ◽  
Author(s):  
Marina Kovalenko ◽  
Ella Dragileva ◽  
Jason St. Claire ◽  
Tammy Gillis ◽  
Jolene R. Guide ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Niu ◽  
Cuifang Ye ◽  
Yun Sun ◽  
Ting Peng ◽  
Shiming Yang ◽  
...  

PLoS Currents ◽  
2012 ◽  
Vol 4 ◽  
pp. e4fd085bfc9973 ◽  
Author(s):  
Christian Landles ◽  
Andreas Weiss ◽  
Sophie Franklin ◽  
David Howland ◽  
Gill Bates

Sign in / Sign up

Export Citation Format

Share Document