Protein encapsulation in the hollow space of hemocyanin crystals containing a covalently conjugated ligand

2019 ◽  
Vol 514 (1) ◽  
pp. 31-36
Author(s):  
Tsubasa Hashimoto ◽  
Yuxin Ye ◽  
Mihoko Ui ◽  
Tomohisa Ogawa ◽  
Takashi Matsui ◽  
...  
2012 ◽  
pp. 3143 ◽  
Author(s):  
Lifeng Kang ◽  
Kochhar ◽  
Chan ◽  
Shui Zou

2021 ◽  
Author(s):  
Nicholas Zervoudis ◽  
Allie Obermeyer

The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein’s binodal phase boundary. Protein concentrations over 100 mg mL<sup>-1</sup> were achieved in the coacervate phase, with concentrations dependent on the polypeptide sequence. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Thomas Litschel ◽  
Petra Schwille

Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein–membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


CERNE ◽  
2012 ◽  
Vol 18 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Chiara Barros Secco ◽  
Raquel Gonçalves ◽  
Domingos Guilherme Pelegrino Cerri ◽  
Érica Caroline Vasques ◽  
Fernando Augusto Franco Batista

This work aimed to analyze the pattern of variation in wave lengths in presence of wood holes and to develop a model capable of describing the process. To attain that end, wood pieces were used from species pequiá (Aspidosperma desmanthum), on which circular and linear artificial holes were made and gradually enlarged. Ultrasonic tests were performed using USLab equipment and 45 kHz transducers. Measurements were taken first on the intact piece and then after each stage of artificial hole enlargement. Results demonstrated that propagation velocities of ultrasonic waves are affected by presence of holes and also that reduction in velocity is caused by changes in wave path, since waves tend to deviate from empty space and travel through matter. The circular hole type had a slightly stronger influence on velocity reduction than the linear hole type. Variation in velocity as a function of increasing percentage of hollow space relative to the intact piece can be represented by a linear model.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 886 ◽  
Author(s):  
Filippo Begarani ◽  
Domenico Cassano ◽  
Eleonora Margheritis ◽  
Roberto Marotta ◽  
Francesco Cardarelli ◽  
...  

Although conceptually obvious, the effective delivery of proteins in therapeutic applications is far from being a routine practice. The major limitation is the conservation of protein physicochemical identity during the transport to the target site. In this regard, nanoparticle-based systems offer new intriguing possibilities, provided that (i) the harsh and denaturating conditions typically used for nanoparticle synthesis are avoided or mitigated; and (ii) nanoparticle biocompatibility and degradation (for protein release) are optimized. Here, we tackle these issues by starting from a nanoparticle architecture already tested for small chemical compounds. In particular, silica-shielded liposomes are produced and loaded with a test protein (i.e., Green Fluorescent Protein) in an aqueous environment. We demonstrate promising results concerning protein encapsulation, protection during intracellular trafficking and final release triggered by nanoparticle degradations in acidic organelles. We believe this proof of principle may open new applications and developments for targeted and efficient protein delivery.


2020 ◽  
Vol 10 (3) ◽  
pp. 582-593 ◽  
Author(s):  
Carla B. Roces ◽  
Dennis Christensen ◽  
Yvonne Perrie

AbstractIn the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability and its ability to offer a range of controlled release profiles. Common methods for the production of PLGA particles often adopt harsh solvents, surfactants/stabilisers and in general are multi-step and time-consuming processes. This limits the translation of these drug delivery systems from bench to bedside. To address this, we have applied microfluidic processes to develop a scale-independent platform for the manufacture, purification and monitoring of nanoparticles. Thereby, the influence of various microfluidic parameters on the physicochemical characteristics of the empty and the protein-loaded PLGA particles was evaluated in combination with the copolymer employed (PLGA 85:15, 75:25 or 50:50) and the type of protein loaded. Using this rapid production process, emulsifying/stabilising agents (such as polyvinyl alcohol) are not required. We also incorporate in-line purification systems and at-line particle size monitoring. Our results demonstrate the microfluidic control parameters that can be adopted to control particle size and the impact of PLGA copolymer type on the characteristics of the produced particles. With these nanoparticles, protein encapsulation efficiency varies from 8 to 50% and is controlled by the copolymer of choice and the production parameters employed; higher flow rates, combined with medium flow rate ratios (3:1), should be adopted to promote higher protein loading (% wt/wt). In conclusion, herein, we outline the process controls for the fabrication of PLGA polymeric nanoparticles incorporating proteins in a rapid and scalable manufacturing process.


Author(s):  
R. N. Bukhtin

The paper shows the research results of the effect of a spherical hollow space on the aircraft flight path. By flow simulation of the hollow space, there was plotted an analytical dependence of the surface pressure force on the parameters of the oncoming gas flow. The aircraft deflection caused by the presence of a spherical hollow space is estimated depending on its position, the initial speed of flight and the pitch attitude


Sign in / Sign up

Export Citation Format

Share Document