scholarly journals FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus

2020 ◽  
Vol 526 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Praveen R. Juvvadi ◽  
Benjamin G. Bobay ◽  
Sophie M.C. Gobeil ◽  
D. Christopher Cole ◽  
Ronald A. Venters ◽  
...  
2015 ◽  
Vol 11 (11) ◽  
pp. e1005205 ◽  
Author(s):  
Chi-Jan Lin ◽  
Christoph Sasse ◽  
Jennifer Gerke ◽  
Oliver Valerius ◽  
Henriette Irmer ◽  
...  

2010 ◽  
Vol 300 (7) ◽  
pp. 496-502 ◽  
Author(s):  
Franziska Dirr ◽  
Bernd Echtenacher ◽  
Jürgen Heesemann ◽  
Petra Hoffmann ◽  
Frank Ebel ◽  
...  

2011 ◽  
pp. 339-343
Author(s):  
Milos Stupar ◽  
Milica Ljaljevic-Grbic ◽  
Jelena Vukojevic ◽  
Aleksa Jelikic

Microfungi can colonize stone surfaces and form sub-aerial biofilms which can lead to biodeterioration of historic monuments. In this investigation samples for mycological analyses were collected from stone material with visible alteration on stone walls of Gradac monastery exterior. The prevailing fungi found on stone walls were dematiaceous hyphomycetes with melanized hyphae and reproductive structures (Alternaria, Aureobasidium, Cladosporium and Epicoccum species). The frescoes inside the monastery building were also analyzed for the presence of mycobiota. The predominant fungi found on frescoes were osmophilic species from genera Aspergillus and Penicillium. The significant result is identification of human pathogen species Aspergillus fumigatus on frescoes.


mSphere ◽  
2022 ◽  
Author(s):  
E. M. Keizer ◽  
I. D. Valdes ◽  
B. L. McCann ◽  
E. M. Bignell ◽  
H. A. B. Wösten ◽  
...  

Opportunistic pathogens like Aspergillus fumigatus have strategies to protect themselves against reactive oxygen species like hydrogen peroxides and superoxides that are produced by immune cells. DHN-melanin is the green pigment on conidia of Aspergillus fumigatus and more than 2 decades ago was reported to protect conidia against hydrogen peroxide.


2021 ◽  
Vol 7 (9) ◽  
pp. 768
Author(s):  
Mario Aguiar ◽  
Thomas Orasch ◽  
Matthias Misslinger ◽  
Anna-Maria Dietl ◽  
Fabio Gsaller ◽  
...  

Siderophore-mediated acquisition of iron has been shown to be indispensable for the virulence of several fungal pathogens, the siderophore transporter Sit1 was found to mediate uptake of the novel antifungal drug VL-2397, and siderophores were shown to be useful as biomarkers as well as for imaging of fungal infections. However, siderophore uptake in filamentous fungi is poorly characterized. The opportunistic human pathogen Aspergillus fumigatus possesses five putative siderophore transporters. Here, we demonstrate that the siderophore transporters Sit1 and Sit2 have overlapping, as well as unique, substrate specificities. With respect to ferrichrome-type siderophores, the utilization of ferrirhodin and ferrirubin depended exclusively on Sit2, use of ferrichrome A depended mainly on Sit1, and utilization of ferrichrome, ferricrocin, and ferrichrysin was mediated by both transporters. Moreover, both Sit1 and Sit2 mediated use of the coprogen-type siderophores coprogen and coprogen B, while only Sit1 transported the bacterial ferrioxamine-type xenosiderophores ferrioxamines B, G, and E. Neither Sit1 nor Sit2 were important for the utilization of the endogenous siderophores fusarinine C and triacetylfusarinine C. Furthermore, A. fumigatus was found to lack utilization of the xenosiderophores schizokinen, basidiochrome, rhizoferrin, ornibactin, rhodotorulic acid, and enterobactin. Taken together, this study characterized siderophore use by A. fumigatus and substrate characteristics of Sit1 and Sit2.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02880-20
Author(s):  
E. Keats Shwab ◽  
Praveen R. Juvvadi ◽  
Greg Waitt ◽  
Shareef Shaheen ◽  
John Allen ◽  
...  

ABSTRACTProtein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0216092 ◽  
Author(s):  
Binita Nepal ◽  
Ryan Myers ◽  
Jessica M. Lohmar ◽  
Olivier Puel ◽  
Brett Thompson ◽  
...  

2006 ◽  
Vol 5 (10) ◽  
pp. 1585-1595 ◽  
Author(s):  
Jae-Hyung Mah ◽  
Jae-Hyuk Yu

ABSTRACT The opportunistic human pathogen Aspergillus fumigatus produces a large quantity of asexual spores (conidia), which are the primary agent causing invasive aspergillosis in immunocompromised patients. We investigated the mechanisms controlling asexual sporulation (conidiation) in A. fumigatus via examining functions of four key regulators, GpaA (Gα), AfFlbA (RGS), AfFluG, and AfBrlA, previously studied in Aspergillus nidulans. Expression analyses of gpaA, AfflbA, AffluG, AfbrlA, and AfwetA throughout the life cycle of A. fumigatus revealed that, while transcripts of AfflbA and AffluG accumulate constantly, the latter two downstream developmental regulators are specifically expressed during conidiation. Both loss-of-function AfflbA and dominant activating GpaAQ204L mutations resulted in reduced conidiation with increased hyphal proliferation, indicating that GpaA signaling activates vegetative growth while inhibiting conidiation. As GpaA is the primary target of AfFlbA, the dominant interfering GpaAG203R mutation suppressed reduced conidiation caused by loss of AfflbA function. These results corroborate the hypothesis that functions of G proteins and RGSs are conserved in aspergilli. We then examined functions of the two major developmental activators AfFluG and AfBrlA. While deletion of AfbrlA eliminated conidiation completely, null mutation of AffluG did not cause severe alterations in A. fumigatus sporulation in air-exposed culture, implying that, whereas the two aspergilli may have a common key downstream developmental activator, upstream mechanisms activating brlA may be distinct. Finally, both AffluG and AfflbA mutants showed reduced conidiation and delayed expression of AfbrlA in synchronized developmental induction, indicating that these upstream regulators contribute to the proper progression of conidiation.


Sign in / Sign up

Export Citation Format

Share Document