scholarly journals Antioxidant and anticancer activities of enzymatic eel (monopterus sp) protein hydrolysate as influenced by different molecular weight

2018 ◽  
Vol 16 ◽  
pp. 10-16 ◽  
Author(s):  
Nura Ruhaya Abdul Halim ◽  
Azrina Azlan ◽  
Hayati Mohd Yusof ◽  
Norizah Mhd Sarbon
2019 ◽  
Vol 20 (8) ◽  
pp. 1939 ◽  
Author(s):  
Loïc Henaux ◽  
Jacinthe Thibodeau ◽  
Geneviève Pilon ◽  
Tom Gill ◽  
André Marette ◽  
...  

The valorization of by-products from natural organic sources is an international priority to respond to environmental and economic challenges. In this context, electrodialysis with filtration membrane (EDFM), a green and ultra-selective process, was used to separate peptides from salmon frame protein hydrolysate. For the first time, the simultaneous separation of peptides by three ultrafiltration membranes of different molecular-weight exclusion limits (50, 20, and 5 kDa) stacked in an electrodialysis system, allowed for the generation of specific cationic and anionic fractions with different molecular weight profiles and bioactivity responses. Significant decreases in peptide recovery, yield, and molecular weight (MW) range were observed in the recovery compartments depending on whether peptides had to cross one, two, or three ultrafiltration membranes. Moreover, the Cationic Recovery Compartment 1 fraction demonstrated the highest increase (42%) in glucose uptake on L6 muscle cells. While, in the anionic configuration, both Anionic Recovery Compartment 2 and Anionic Recovery Compartment 3 fractions presented a glucose uptake response in basal condition similar to the insulin control. Furthermore, Cationic Recovery Compartment 3 was found to contain inhibitory peptides. Finally, LC-MS analyses of the bioassay-guided bioactive fractions allowed us to identify 11 peptides from salmon by-products that are potentially responsible for the glucose uptake improvement.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


Author(s):  
Qian Zhang ◽  
Yuhao Wen ◽  
Kang Liu ◽  
Nailiang Liu ◽  
Yaping Du ◽  
...  

2021 ◽  
Vol 213 ◽  
pp. 106704
Author(s):  
Chenguang Jiang ◽  
Yonggang Wang ◽  
Haiyong Zhang ◽  
Xiongchao Lin ◽  
KeChang Xie

Sign in / Sign up

Export Citation Format

Share Document