Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway—Effect of SH reagents

Author(s):  
Dario Domenico Lofrumento ◽  
Gianluigi La Piana ◽  
Valeria Palmitessa ◽  
Daniela Isabel Abbrescia ◽  
Nicola Elio Lofrumento
2010 ◽  
Vol 504 (2) ◽  
pp. 210-220 ◽  
Author(s):  
Vincenza Gorgoglione ◽  
Valeria Palmitessa ◽  
Dario Domenico Lofrumento ◽  
Gianluigi La Piana ◽  
Daniela Isabel Abbrescia ◽  
...  

2011 ◽  
pp. 329-336 ◽  
Author(s):  
J.-L. WU ◽  
Q.-P. WU ◽  
Y.-P. PENG ◽  
J.-M. ZHANG

Accumulation of oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the aging process. The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-malate, a tricarboxylic acid cycle intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production. Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. In the present study we focused on the effect of L-malate on the activities of electron transport chain in young and aged rats. We found that mitochondrial membrane potential (MMP) and the activities of succinate dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats were significantly decreased when compared to young control rats. Supplementation of L-malate to aged rats for 30 days slightly increased MMP and improved the activities of NADH-dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats when compared with aged control rats. In young rats, L-malate administration increased only the activity of NADH-dehydrogenase. Our result suggested that L-malate could improve the activities of electron transport chain enzymes in aged rats


1990 ◽  
Vol 259 (6) ◽  
pp. C889-C896 ◽  
Author(s):  
R. M. McAllister ◽  
R. L. Terjung

Electron transport capacity of skeletal muscle was inhibited in situ in an acute dose-dependent manner with myxothiazol, a tight-binding inhibitor of ubiquinone-cytochrome c reductase, complex III of the respiratory chain. Peak oxygen consumption of rat hindlimb muscle was determined via consecutive 10-min isometric contraction (100 ms at 100 Hz) periods of increasing energy demands (4, 8, 15, 30, 45, and 60 tetani/min), using an isolated hindlimb preparation perfused with a high oxygen delivery (approximately 6-8 mumol.min-1.g-1). Peak oxygen consumption decreased from 4.61 +/- 0.19 mumol.min-1.g-1 (control) in a dose-dependent manner to 0.73 +/- 0.07 mumol.min-1.g-1 at 0.50 microM myxothiazol in blood. Oxygen extraction decreased from 65 to 12% of delivered oxygen. Furthermore, the reduction in peak respiratory rate became evident at lower energy demands of the contraction sequence. Myxothiazol inhibition of respiration was not dependent on the presence of muscle contractions but was evident when mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. A 50% effective dosage (ED50) of 0.21 microM myxothiazol for inhibition of peak oxygen consumption closely resembled the inhibition of NADH-cytochrome c reductase activity (ED50 of 0.27 microM) determined from homogenates of the same muscles. This suggests that the peak oxygen consumption of skeletal muscle is tightly coupled to the capacity for electron transport evaluated by flux through NADH-cytochrome c reductase. If the enzyme activity measured in vitro correctly represents available enzymatic capacity within contracting muscle, approximately 75% of electron transport capacity for handling reducing equivalents generated from NADH is utilized during peak oxygen consumption of rat hindlimb muscle contracting in situ.


Sign in / Sign up

Export Citation Format

Share Document