KIF18B as a regulator in tumor microenvironment accelerates tumor progression and triggers poor outcome in hepatocellular carcinoma

Author(s):  
Meng-jun Qiu ◽  
Li Zhang ◽  
Yao-bing Chen ◽  
Li-sheng Zhu ◽  
Bin Zhang ◽  
...  
2012 ◽  
Vol 39 (5) ◽  
pp. 416-422
Author(s):  
Zhi-Lei LIU ◽  
Wei SUN ◽  
Fu-Chu HE ◽  
Xian-Ling CONG ◽  
Ying JIANG

Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 131
Author(s):  
Young-Jen Lin ◽  
Cheng-Maw Ho

Surgical resection is the first-line curative treatment modality for resectable hepatocellular carcinoma (HCC). Anatomical resection (AR), described as systematic removal of a liver segment confined by tumor-bearing portal tributaries, may improve survival by reducing the risk of tumor recurrence compared with non-AR. In this article, we propose the rationale for AR and its universal adoption by providing supporting evidence from the advanced understanding of a tumor microenvironment and accumulating clinical experiences of locoregional tumor ablation therapeutics. AR may be advantageous because it completely removes the en-bloc by interrupting tumor vascular supply and thus extirpates the spreading of tumor microthrombi, if they ever exist, within the supplying portal vein. However, HCC is a hypervascular tumor that can promote neoangiogenesis in the local tumor microenvironment, which in itself can break through the anatomical boundary within the liver and even retrieve nourishment from extrahepatic vessels, such as inferior phrenic or omental arteries. Additionally, increasing clinical evidence for locoregional tumor ablation therapies, such as radiofrequency ablation, predominantly performed as a non-anatomical approach, suggests comparable outcomes for surgical resection, particularly in small HCC and colorectal, hepatic metastases. Moreover, liver transplantation for HCC, which can be considered as AR of the whole liver followed by implantation of a new graft, is not universally free from post-transplant tumor recurrence. Overall, AR should not be considered the gold standard among all surgical resection methods. Surgical resection is fundamentally reliant on choosing the optimal margin width to achieve en-bloc tumor niche removal while balancing between oncological radicality and the preservation of postoperative liver function. The importance of this is to liberate surgical resilience in hepatocellular carcinoma. The overall success of HCC treatment is determined by the clearance of the theoretical niche. Developing biomolecular-guided navigation device/technologies may provide surgical guidance toward the total removal of microscopic tumor niche to achieve superior oncological outcomes.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102113
Author(s):  
Vaishali Aggarwal ◽  
Catalina Ardila Montoya ◽  
Vera S. Donnenberg ◽  
Shilpa Sant

2021 ◽  
Vol 11 (3) ◽  
pp. 219
Author(s):  
Ya-Ling Yang ◽  
Yen-Hsiang Chang ◽  
Chia-Jung Li ◽  
Ying-Hsien Huang ◽  
Ming-Chao Tsai ◽  
...  

Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.


2021 ◽  
Vol 9 (1) ◽  
pp. e001341
Author(s):  
Chunxiao Li ◽  
Xiaofei Xu ◽  
Shuhua Wei ◽  
Ping Jiang ◽  
Lixiang Xue ◽  
...  

Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.


2021 ◽  
Vol 1 (6) ◽  
Author(s):  
Daniel Taranto ◽  
Christel F.A. Ramirez ◽  
Serena Vegna ◽  
Marnix H.P. Groot ◽  
Niels Wit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document