Insight into the structural flexibility and function of Mycobacterium tuberculosis isocitrate lyase

Biochimie ◽  
2015 ◽  
Vol 110 ◽  
pp. 73-80 ◽  
Author(s):  
Harish Shukla ◽  
Vikash Kumar ◽  
Amit Kumar Singh ◽  
Neha Singh ◽  
Md. Kashif ◽  
...  
2019 ◽  
Author(s):  
Wei Wen-ping ◽  
Jia Wan Zhong ◽  
Yang Min

The type II toxin antitoxin (TA) system is the most well-studied TA system and is widely distributed in bacteria, especially pathogens such as Mycobacterium tuberculosis. Type II TA system plays an important role in many cellular processes, including maintaining the stability of mobile genetic elements, and bacterial altruistic suicide in response to nutritional starvation, environmental stress and phage infection. Interactions between toxin proteins and antitoxin proteins are critical for the regulation and function of type II TA systems; indeed, the understanding of their function is mainly derived from interaction and regulation of paired TA system proteins. Nonetheless, investigating interaction between unpaired TA system proteins, and the interaction between TA system proteins and other functional proteins, are becoming more common and have provided new insight into the complexity of its regulatory mechanism. In this review, we outlined the cross-interaction between TA system proteins, and the interaction between TA system proteins and other functional proteins, and we are trying to explain novel mechanism of TA system in the regulation of cellular activities. On this basis, we further discussed the knowledge and physiological implications of the relevant aspects of TA system research.


2021 ◽  
Author(s):  
Lin Zhang ◽  
Eckhard Bill ◽  
Peter M. H. Kroneck ◽  
Oliver Einsle

Variants of all seven histidine ligands of the [4Cu:2S] active site of nitrous oxide reductase mostly result in loss of the metal site. However, a H382A variant retains a [3Cu:2S] cluster that hints towards a structural flexibility also present in the intact site.


2019 ◽  
Author(s):  
Wei Wen-ping ◽  
Jia Wan Zhong ◽  
Yang Min

The type II toxin antitoxin (TA) system is the most well-studied TA system and is widely distributed in bacteria, especially pathogens such as Mycobacterium tuberculosis. Type II TA system plays an important role in many cellular processes, including maintaining the stability of mobile genetic elements, and bacterial altruistic suicide in response to nutritional starvation, environmental stress and phage infection. Interactions between toxin proteins and antitoxin proteins are critical for the regulation and function of type II TA systems; indeed, the understanding of their function is mainly derived from interaction and regulation of paired TA system proteins. Nonetheless, investigating interaction between unpaired TA system proteins, and the interaction between TA system proteins and other functional proteins, are becoming more common and have provided new insight into the complexity of its regulatory mechanism. In this review, we outlined the cross-interaction between TA system proteins, and the interaction between TA system proteins and other functional proteins, and we are trying to explain novel mechanism of TA system in the regulation of cellular activities. On this basis, we further discussed the knowledge and physiological implications of the relevant aspects of TA system research.


2019 ◽  
Author(s):  
Yang Min ◽  
Wei Wen-ping ◽  
Jia Wan Zhong ◽  
He ZhengGuo

The type II toxin antitoxin (TA) system is the most well-studied TA system and is widely distributed in bacteria, especially pathogens such as Mycobacterium tuberculosis. Type II TA system plays an important role in many cellular processes, including maintaining the stability of mobile genetic elements, and bacterial altruistic suicide in response to nutritional starvation, environmental stress and phage infection. Interactions between toxin proteins and antitoxin proteins are critical for the regulation and function of type II TA systems; indeed, the understanding of their function is mainly derived from interaction and regulation of paired TA system proteins. Nonetheless, investigating interaction between unpaired TA system proteins, and the interaction between TA system proteins and other functional proteins, are becoming more common and have provided new insight into the complexity of its regulatory mechanism. In this review, we outlined the cross-interaction between TA system proteins, and the interaction between TA system proteins and other functional proteins, and we are trying to explain novel mechanism of TA system in the regulation of cellular activities. On this basis, we further discussed the knowledge and physiological implications of the relevant aspects of TA system research.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2019 ◽  
Vol 14 (6) ◽  
pp. 470-479 ◽  
Author(s):  
Nazia Parveen ◽  
Amen Shamim ◽  
Seunghee Cho ◽  
Kyeong Kyu Kim

Background: Although most nucleotides in the genome form canonical double-stranded B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical DNAs (ncDNAs) are not only associated with many genetic events such as replication, transcription, and recombination, but are also related to the genetic instability that results in the predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions, various computational methods have been implemented to predict sequence motifs that generate ncDNA. Objective: Here, we review strategies for the identification of ncDNA motifs across the whole genome, which is necessary for further understanding and investigation of the structure and function of ncDNAs. Conclusion: There is a great demand for computational prediction of non-canonical DNAs that play key functional roles in gene expression and genome biology. In this study, we review the currently available computational methods for predicting the non-canonical DNAs in the genome. Current studies not only provide an insight into the computational methods for predicting the secondary structures of DNA but also increase our understanding of the roles of non-canonical DNA in the genome.


Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


2009 ◽  
Vol 386 (2) ◽  
pp. 486-503 ◽  
Author(s):  
Buvaneswari Narayanan ◽  
Weiling Niu ◽  
Henk-Jan Joosten ◽  
Zhimin Li ◽  
Remko K.P. Kuipers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document