7β-hydroxycholesterol-induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg oil

Biochimie ◽  
2018 ◽  
Vol 153 ◽  
pp. 210-219 ◽  
Author(s):  
Amira Zarrouk ◽  
Yosra Ben Salem ◽  
Jawhar Hafsa ◽  
Randa Sghaier ◽  
Bassem Charfeddine ◽  
...  
2020 ◽  
Vol 13 (11) ◽  
pp. 355
Author(s):  
Paula Aranaz ◽  
David Navarro-Herrera ◽  
María Zabala ◽  
Ana Romo-Hualde ◽  
Miguel López-Yoldi ◽  
...  

Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders.


2011 ◽  
Vol 668 (1-2) ◽  
pp. 248-256 ◽  
Author(s):  
Monique C. de Oliveira ◽  
Elismari R. Martins-Maciel ◽  
Jurandir F. Comar ◽  
Nair S. Yamamoto ◽  
Adelar Bracht ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2711-2711
Author(s):  
Ravi Dashnamoorthy ◽  
Frederick Lansigan ◽  
Wilson L Davis ◽  
Nancy Kuemmerle ◽  
William B Kinlaw ◽  
...  

Abstract Abstract 2711 Background: Fatty acid synthase (FASN) is a key enzyme of fatty acid synthesis and is upregulated in many cancers. Increased FASN in cancer is associated with poor prognosis, while inhibition of FASN results in cancer cell death. The MEK/ERK signal transduction is one of the primary pathways that activate tumor-related FASN. Lipoprotein lipase (LPL) is also involved in fatty acid metablishm as it releases free fatty acid (FFA) from circulating lipoproteins, making them available for cellular uptake. Notably, these concepts have emerged primarily from solid tumor studies; there is a comparative paucity of data in lymphoma. We examined the functional roles of FASN and LPL in DLBCL cells and their interaction with oncogenic signal transduction pathways including MEK/ERK and an upstream target, hypoxia inducible factor-1 alpha (HIF-1a). We also investigated potential therapeutic implications of targeting fatty acid metabolism for the treatment of DLBCL. Methods: We used the DLBCL cell lines OCI-LY3, OCI-LY19, SUDHL4, and SUDHL10 in normoxic or hypoxic (0.2% O2) conditions. Cerulenin (FASN inhibitor) and Orlistat (FASN and LPL inhibitor) were utilized to examine the effect of fatty acid enzyme inhibition on cell signaling and cell death. We assessed cell viability with the MTT assay and apoptosis by flow cytometric analysis of Annexin-V/propidium iodide (PI). FASN and LPL mRNAs were quantified in DLBCL cell lines by RT-PCR as well as through gene expression profiling (GEP) analysis (by cell of origin) using the CaBIG dataset. Further, FASN and associated signaling pathways (MEK, ERK, and HIF-1a) were analyzed by Western blot. Finally, for investigation of potential interactions between FASN and HIF-1a, or MAPK signaling, we utilized short hairpin RNA interference (shRNA) to knock down (KD) pathways of interest. Results: FASN protein expression was readily detectable in all DLBCL cell lines in normoxia, while the expression of LPL was barely detectable in most cells, except in SUDHL10 and only in hypoxic conditions. RT-PCR showed that all DLBCL cell lines tested expressed high levels of FASN mRNA, while minimal levels of LPL could be detected; GEP showed that FASN was expressed more prominently in germinal center (GC) DLBCL (p=0.0006 vs GC control and p=0.0001 vs non-GC DLBCL), whereas LPL was preferentially expressed in non-GC DLBCL (p<0.0001 vs non-GC control and GC DLBCL). We next examined FASN expression following KD of MEK, ERK, or HIF-1a using shRNA in OCI-LY3 and SUDHL10 cells. HIF-1a KD significantly decreased FASN expression; this result was most prominent in OCI-LY3 cells, although it was also evident in SUDHL10. Interestingly, MEK and ERK KDs had minimal effect on FASN or LPL. Pharmacologic treatment with cerulenin, however, resulted in inhibition of MEK and ERK phosphorylation in OCI-LY3 cells. Additionally, treatment with Cerulenin or Orlistat (0.25–4 μg/mL for 48 hours) resulted in dose-dependent cytotoxicity across several DLBCL cell lines (OCI-LY3, SUDHL4, and SUDHL10) with an approximate IC50 of 1μg/mL in all lines. Furthermore, treatment with Cerulenin resulted in induction of apoptosis, which was mediated by caspase cleavage (caspases 3, 8 and 9) in SUDHL4 and OCI-LY3 cells. Conclusions: We demonstrated that FASN is constitutively activated in DLBCL with expression in part dependent on cell of origin, while LPL protein or message were mostly down-regulated. HIF-1a is a constitutively activated oncogenic pathway in DLBCL (Evens AM, et al. Br J Haematol 2008) and it appeared here to directly regulate FASN expression. In addition, we showed that targeting fatty acid metabolism may be harnessed as a potential therapeutic strategy. Further investigations are required to delineate the mechanisms through which MAPK and HIF-1a regulate FASN expression and to determine the in vivo implications of FASN inhibition on DLBCL tumor growth. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 212 (4) ◽  
pp. 359-371 ◽  
Author(s):  
Aleš Zák ◽  
Eva Tvrzická ◽  
Marek Vecka ◽  
Marie Jáchymová ◽  
Ladislava Duffková ◽  
...  

2010 ◽  
Vol 90 (3) ◽  
pp. 1165-1194 ◽  
Author(s):  
Harmeet Malhi ◽  
Maria Eugenia Guicciardi ◽  
Gregory J. Gores

The hepatocyte is especially vulnerable to injury due to its central role in xenobiotic metabolism including drugs and alcohol, participation in lipid and fatty acid metabolism, its unique role in the enterohepatic circulation of bile acids, the widespread prevalence of hepatotropic viruses, and its existence within a milieu of innate immune responding cells. Apoptosis and necrosis are the most widely recognized forms of hepatocyte cell death. The hepatocyte displays many unique features regarding cell death by apoptosis. It is quite susceptible to death receptor-mediated injury, and its death receptor signaling pathways involve the mitochondrial pathway for efficient cell killing. Also, death receptors can trigger lysosomal disruption in hepatocytes which further promote cell and tissue injury. Interestingly, hepatocytes are protected from cell death by only two anti-apoptotic proteins, Bcl-xL and Mcl-1, which have nonredundant functions. Endoplasmic reticulum stress or the unfolded protein response contributes to hepatocyte cell death during alterations of lipid and fatty acid metabolism. Finally, the current information implicating RIP kinases in necrosis provides an approach to more fully address this mode of cell death in hepatocyte injury. All of these processes contributing to hepatocyte injury are discussed in the context of potential therapeutic strategies.


2018 ◽  
Author(s):  
Kerui Huang ◽  
Wenhao Chen ◽  
Fang Zhu ◽  
Hua Bai

AbstractBackgroundAging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, aged liver shows altered lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In fruit flies, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Although the role of fat body in aging regulation has been well studied, little is known about how oenocytes age and what are their roles in aging regulation. To address these questions, we used cell-type-specific ribosome profiling (RiboTag) to study the impacts of aging and oxidative stress on oenocyte translatome in Drosophila.ResultsWe show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, mitochondrial, proteasome, peroxisome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and glutathione metabolic pathways were up-regulated. Interestingly, most of the peroxisomal genes were down-regulated in aged oenocytes, including peroxisomal biogenesis factors and beta-oxidation genes. Further analysis of the oenocyte translatome showed that oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). Many age-related transcriptional changes in oenocytes are similar to aging liver, including up-regulation of Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism.ConclusionsOur oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes are altered in both aged oenocytes and aged liver, suggesting a conserved molecular mechanism underlying oenocyte and liver aging. Thus, our translatome analysis will contribute significantly to the understanding of oenocyte biology, and its role in lipid metabolism, stress response and aging regulation.


2018 ◽  
Author(s):  
Hsin-Yi Chen ◽  
Minu Samanta ◽  
Patricia Reyes-Uribe ◽  
Andrew V. Kossenkov ◽  
Xiangfan Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document