Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa

2010 ◽  
Vol 143 (2) ◽  
pp. 529-531 ◽  
Author(s):  
Brianna A. Lam ◽  
Jenifer B. Walke ◽  
Vance T. Vredenburg ◽  
Reid N. Harris
2020 ◽  
Vol 96 (10) ◽  
Author(s):  
A H Loudon ◽  
A Kurtz ◽  
E Esposito ◽  
T P Umile ◽  
K P C Minbiole ◽  
...  

ABSTRACT Global amphibian declines due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) have led to questions about how amphibians defend themselves against skin diseases. A total of two amphibian defense mechanisms are antimicrobial peptides (AMPs), a component of amphibian innate immune defense and symbiotic skin bacteria, which can act in synergy. We characterized components of these factors in four populations of Columbia spotted frogs (Rana luteiventris) to investigate their role in disease defense. We surveyed the ability of their AMPs to inhibit Bd, skin bacterial community composition, skin metabolite profiles and presence and intensity of Bd infection. We found that AMPs from R. luteiventris inhibited Bd in bioassays, but inhibition did not correlate with Bd intensity on frogs. R. luteiventris had two prevalent and abundant core bacteria: Rhizobacter and Chryseobacterium. Rhizobacter relative abundance was negatively correlated with AMP's ability to inhibit Bd, but was not associated with Bd status itself. There was no relationship between metabolites and Bd. Bacterial communities and Bd differ by location, which suggests a strong environmental influence. R. luteiventris are dominated by consistent core bacteria, but also house transient bacteria that are site specific. Our emergent hypothesis is that host control and environmental factors shape the microbiota on R. luteiventris.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Carly R. Muletz-Wolz ◽  
Graziella V. DiRenzo ◽  
Stephanie A. Yarwood ◽  
Evan H. Campbell Grant ◽  
Robert C. Fleischer ◽  
...  

ABSTRACT Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders. IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis. Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis. Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20142881 ◽  
Author(s):  
Matthew H. Becker ◽  
Jenifer B. Walke ◽  
Shawna Cikanek ◽  
Anna E. Savage ◽  
Nichole Mattheus ◽  
...  

Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki , a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.


2015 ◽  
Vol 187 ◽  
pp. 91-102 ◽  
Author(s):  
Whitney M. Holden ◽  
Shane M. Hanlon ◽  
Douglas C. Woodhams ◽  
Timothy M. Chappell ◽  
Heather L. Wells ◽  
...  

2015 ◽  
Vol 2 (7) ◽  
pp. 140377 ◽  
Author(s):  
Ana V. Longo ◽  
Anna E. Savage ◽  
Ian Hewson ◽  
Kelly R. Zamudio

Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians ( Lithobates yavapaiensis and Eleutherodactylus coqui ) affected by the pathogenic fungus Batrachochytrium dendrobatidis ( Bd ). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in  L. yavapaiensis . We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance.


2016 ◽  
Vol 52 (1) ◽  
pp. 154-158 ◽  
Author(s):  
Thomas J. Poorten ◽  
Mary J. Stice-Kishiyama ◽  
Cheryl J. Briggs ◽  
Erica Bree Rosenblum

2021 ◽  
Vol 8 ◽  
Author(s):  
Mae Cowgill ◽  
Andrew G. Zink ◽  
Wesley Sparagon ◽  
Tiffany A. Yap ◽  
Hasan Sulaeman ◽  
...  

The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae, and the arboreal salamander, Aneides lugubris. We (1) conduct a retrospective Bd-infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% (B. luciae and A. lugubris, respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd-caused mortality (88 and 71% for B. luciae and A. lugubris, respectively). Our GLM revealed that Bd-infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics.


Sign in / Sign up

Export Citation Format

Share Document