Possible geographic origin of beech scale, Cryptococcus fagisuga (Hemiptera: Eriococcidae), an invasive pest in North America

2006 ◽  
Vol 39 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Rodger A. Gwiazdowski ◽  
Roy G. Van Driesche ◽  
Adrienne Desnoyers ◽  
Suzanne Lyon ◽  
San-an Wu ◽  
...  
Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 380-384 ◽  
Author(s):  
Rick D. Peters ◽  
Rod J. Clark ◽  
Albert D. Coffin ◽  
Antony V. Sturz ◽  
David H. Lambert ◽  
...  

Pink rot of potato (Solanum tuberosum), caused by Phytophthora erythroseptica, is found wherever potatoes are grown, and in the last decade, it has reemerged as an economically important disease in Canada and the United States. A selection of isolates of P. erythroseptica from major potato-growing regions in North America, namely Prince Edward Island and New Brunswick, Canada, and Maine and Idaho, U.S.A., was assessed for genetic diversity with randomly chosen decanucleotide primers which were used to amplify regions of DNA to reveal polymorphisms among templates (random amplified polymorphic DNA [RAPD]). The isolates varied in their geographic origin as well as in their sensitivity to mefenoxam, as determined by an in vitro assay. In three separate RAPD screens (I, II, and III) with 23 isolates of P. erythroseptica chosen from a larger collection, 1,410, 369, and 316 robust, scorable bands were amplified, respectively. However, among the bands amplified in screens I, II, and III, only 3, 1, and 3 bands, respectively, were polymorphic. When three primers yielding polymorphisms were used to screen 106 isolates from Prince Edward Island and New Brunswick, or a representative collection of 32 isolates from Prince Edward Island, New Brunswick, Maine, and Idaho, no major variation was discovered. RAPD markers were not correlated with geographic origin or mefenoxam sensitivity of the isolates. From an evolutionary standpoint, the absence of genetic diversity among the isolates of P. erythroseptica we examined may be attributable to the relatively recent introduction of a small founding population of the pathogen in North America.


2007 ◽  
Vol 81 (21) ◽  
pp. 11612-11619 ◽  
Author(s):  
Erica Spackman ◽  
David E. Swayne ◽  
David L. Suarez ◽  
Dennis A. Senne ◽  
Janice C. Pedersen ◽  
...  

ABSTRACT Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.


Author(s):  
Marek Dzurenko ◽  
Christopher M. Ranger ◽  
Jiri Hulcr ◽  
Juraj Galko ◽  
Peter Kaňuch

2016 ◽  
Vol 109 (3) ◽  
pp. 1071-1078 ◽  
Author(s):  
J Cossentine ◽  
M Robertson ◽  
D Xu

Abstract Whole-culture extracts of Bacillus thuringiensis Berliner strains were assayed against larval and adult Drosophila suzukii (Matsumura), an important invasive pest of many thin-skinned soft fruit crops in North America. Of the 22 serovars tested versus larval D. suzukii , strains of Bacillus thuringiensis var. thuringiensis , kurstaki , thompsoni , bolivia , and pakistani caused high (75 to 100%) first-instar mortalities. Pupal mortality, measured as a failure of adults to emerge, varied with serovar. The first D. suzukii instar was the most susceptible of the three larval instars to B. thuringiensis var. kurstaki HD-1. Larval D. suzukii are shielded from crop treatments, as they develop under the skin of infested fruit, and adults would be a more vulnerable target for an efficacious strain of B. thuringiensis . Only one of the 21 B. thuringiensis serovars, var. thuringiensis , prepared as oral suspensions in sucrose for adult D. suzukii ingestion resulted in significant, albeit low mortality within 7 d. It is not a candidate for use in pest management, as it produces β -exotoxin that is toxic to vertebrates.


2020 ◽  
Vol 7 (7) ◽  
pp. 200225 ◽  
Author(s):  
Anthony D. Vaudo ◽  
David J. Biddinger ◽  
Wiebke Sickel ◽  
Alexander Keller ◽  
Margarita M. López-Uribe

Studying the pollen preferences of introduced bees allows us to investigate how species use host-plants when establishing in new environments. Osmia cornifrons is a solitary bee introduced into North America from East Asia for pollination of Rosaceae crops such as apples and cherries. We investigated whether O. cornifrons (i) more frequently collected pollen from host-plant species they coevolved with from their geographic origin, or (ii) prefer host-plant species of specific plant taxa independent of origin. To address this question, using pollen metabarcoding, we examined the identity and relative abundance of pollen in larval provisions from nests located in different landscapes with varying abundance of East-Asian and non-Asian plant species. Our results show that O. cornifrons collected more pollen from plant species from their native range. Plants in the family Rosaceae were their most preferred pollen hosts, but they differentially collected species native to East Asia, Europe, or North America depending on the landscape. Our results suggest that while O. cornifrons frequently collect pollen of East-Asian origin, the collection of pollen from novel species within their phylogenetic familial affinities is common and can facilitate pollinator establishment. This phylogenetic preference highlights the effectiveness of O. cornifrons as crop pollinators of a variety of Rosaceae crops from different geographic origins. Our results imply that globalization of non-native plant species may ease the naturalization of their coevolved pollinators outside of their native range.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1025
Author(s):  
Jeremias Götz ◽  
Konstantin V. Krutovsky ◽  
Ludger Leinemann ◽  
Markus Müller ◽  
Om P. Rajora ◽  
...  

Northern red oak (Quercus rubra L.) is one of the most important foreign tree species in Germany and considered as a major candidate for prospective sustainable forestry in the face of climate change. Therefore, Q. rubra was subject of many previous studies on its growth traits and attempts to infer the origin of various populations of this species using nuclear and chloroplast DNA markers. However, the exact geographic origin of German red oak stands has still not been identified. Its native range widely extends over North America, and the species can tolerate a broad range of environmental conditions. We genotyped individual trees in 85 populations distributed in Germany and North America using five chloroplast microsatellite and three novel chloroplast CAPS markers, resulting in the identification of 29 haplotypes. The new marker set enabled the identification of several new red oak haplotypes with restricted geographic origin. Some very rare haplotypes helped us narrow down the origin of Q. rubra stands in Germany, especially some stands from North Rhine-Westphalia, to the northern part of the species’ natural distribution area including the Peninsula of Nova Scotia, where the most similar haplotype composition was observed, compared to distinct German stands.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 691
Author(s):  
Mark G. Volkovitsh ◽  
Andrzej O. Bieńkowski ◽  
Marina J. Orlova-Bienkowskaja

Emerald ash borer (EAB), Agrilus planipennis, native to East Asia, is an invasive pest of ash in North America and European Russia. This quarantine species is a threat to ash trees all over Europe. Survey in ten provinces of European Russia in 2019–2020 showed that EAB had spread faster and farther than was previously thought. The new infested sites were first detected in St. Petersburg (110–120 km from the EU border: Estonia, Finland) and Astrakhan Province (50 km from the Kazakhstan border). The current range of EAB in Europe includes Luhansk Province of Ukraine and 18 provinces of Russia: Astrakhan, Belgorod, Bryansk, Kaluga, Kursk, Lipetsk, Moscow, Orel, Ryazan, Smolensk, St. Petersburg, Tambov, Tula, Tver, Vladimir, Volgograd, Voronezh, and Yaroslavl. Within these, only seven quarantine phytosanitary zones in five provinces are declared by the National Plant Protection Organization of Russia. EAB was not found in the regions along the Middle Volga: Mari El, Chuvash and Tatarstan republics, Nizhny Novgorod, Samara and Saratov provinces. The infested sites in St. Petersburg and in the Lower Volga basin are range enclaves separated from the core invasion range by 470 and 370 km, correspondingly. It is possible that new enclaves can appear in the cities of Eastern Europe and Kazakhstan far from the current known range. All previously known infestations in European Russia were in green ash (Fraxinus pennsylvanica), which was introduced from North America, and individual trees of European ash (F. excelsior). A first confirmed case of mass decline of several thousand of EAB-infested European ash trees in Moscow province is provided. Therefore, there is no more doubt that under certain conditions EAB can seriously damage native ash trees in European forests.


2021 ◽  
Author(s):  
Xue-Wei Wang ◽  
Ji-Hang Jiang ◽  
Shi-Liang Liu ◽  
Yusufjon Gafforov ◽  
Li-Wei Zhou

Coniferiporia, belonging to Hymenochaetaceae and recently segregated from Phellinidium, is a wood-inhabiting fungal genus with three species, each having a specific geographic distribution and a strong host specificity as a forest pathogen of coniferous trees. In this study, the species diversity of Coniferiporia is further clarified with the aid of a wider sampling and multilocus-based phylogenetic analysis, which reveals a new species C. uzbekistanensis. The molecular clock and ancestral geographic origin analyses indicates that the ancestor of Coniferiporia emerged in one of the Pinaceae and Cupressaceae and then jumped to the other plant family originated in eastern Eurasia 17.01 million years ago (Mya) (95% highest posterior density: 9.46–25.86 Mya) and later extended its distribution to western North America, Central Asia and eastern Europe. Coniferiporia sulphurascens speciated on Pinaceae in eastern Eurasia 8.78 Mya (9.46–25.86 Mya) and then extended its distribution to western North America and eastern Europe. Coniferiporia qilianensis and C. uzbekistanensis speciated on Juniperus przewalskii in eastern Eurasia 3.67 Mya (0.36–8.02 Mya) and on J. polycarpos in Central Asia 4.35 Mya (0.94–8.37 Mya), respectively. The speciation event of C. weirii occurred 4.45 Mya (0.77–9.33 Mya) right after the emergence of its host, the endemic Cupressaceae species Thuja plicata, and soon after, this fungus evolved to also inhabit another endemic Cupressaceae species Calocedrus decurrens. In summary, this study for the first time unambiguously clarified and timed the adaptive evolutionary event of Coniferiporia in association with its biogeography and host plants.


2021 ◽  
Author(s):  
Vicki Cottrell

Abstract Coleophora deauratella is a moth species native to Europe, eastern Siberia and the Middle East. It was introduced into North America in the 1960s, becoming a significant pest of Trifolium pratense seed crops in Ontario, Canada in 1989. Based on a study of genetic diversity from a limited number of European populations of C. deauratella, the most probable source of North American populations was found to be Switzerland; further sampling within Europe may improve geographical resolution of the source population. Within North America, C. deauratella has been identified as an invasive in Alberta and Ontario in Canada and Oregon and New York in the USA. It has been an invasive pest in New Zealand since its discovery there in 2015, where it has devastated T. pratense crops.


Sign in / Sign up

Export Citation Format

Share Document