chloroplast dna markers
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. L. Yadav ◽  
Mukesh K. Meghvansi ◽  
Kanta Meena ◽  
C. B. Gena

AbstractEusporangiate fern genus Ophioglossum L. is commonly known as Adder’s tongue fern as its fertile frond gives the appearance of snake tongue. A new species in this fern genus, O. trilokinathii belonging to Ophioglossaceae family has been discovered from the plateau region of Rajasthan State of northwestern India. The new species can be distinguished from other taxa of this genus by its smaller habit, subglobose-tuberous rhizome, basipetal emergence of young roots, aggregation of old decaying roots on rhizome apex, fertile stalk as well as spike short and thick, trophophylls in rosette, ovate or orbicular and a unique sporoderm sculpture pattern under SEM having broad reticulations with thick and raised muri enclosing large hexagonal or irregular areas on the distal and proximal faces of the spores hitherto unreported in any of the presently known taxa of Ophioglossum. In addition, comparative study of stomatal structure, foliar anatomy and nucleotide sequence data of its three chloroplast DNA markers (trnL-F, rbcL and psbA-trnH) was carried out. In view of all the attributes including habitat, ecology, morphology, foliar anatomy, stomatal features, palynology and molecular phylogenetic data, the present study suggests that the Ophioglossum specimen collected from plateau region of Rajasthan represents a hitherto undescribed species thereby warranting its establishment as O. trilokinathii sp. nov. A detailed comparative account of the new taxon with its allied species has also been provided.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shizhuo Xiao ◽  
Pan Xu ◽  
Yitong Deng ◽  
Xibin Dai ◽  
Lukuan Zhao ◽  
...  

Abstract Background Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. Results The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. Conclusions Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 446
Author(s):  
Justine G. Nzweundji ◽  
Ulrike Huewe ◽  
Nicolas Niemenak ◽  
Néhémie T. Donfagsiteli ◽  
Klaus Eimert

Genetic diversity of species is an important baseline for the domestication process. In Cameroon, Prunus africana, an important and threatened medicinal tree, is among the priority species for domestication. The bark extract has been used to treat various diseases; mainly benign prostatic hyperplasia which affects men above the age of 50. As little is known about the genetic diversity of P. africana in Cameroon, we aimed to determine the genetic diversity and differentiation of several P. africana populations in the western provinces, using sets of chloroplast DNA markers and nuclear microsatellites previously developed for Prunus species. Genetic diversity in the observed populations was considerable and genetic differentiation between populations proved substantial with 21% of the total observed variation detected among populations, revealing a distinct genetic structure among certain populations. However, the lack of correlation between genetic and geographic distances does not support isolation by distance (IBD). The analysis of chloroplast DNA haplotypes revealed no strong phylogeographic component in the genetic structure observed in the western populations of P. africana in Cameroon. The outcome of this study will contribute to improve the genetic characterization of P. africana for its better domestication and conservation in the Cameroon agroforestry system.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 422
Author(s):  
Gillian K. Brown ◽  
Elizabeth A. James ◽  
Catherine L. Simmons ◽  
Collin W. Ahrens

Paraseriantheslophantha subsp. lophantha (Leguminosae) is native to southwestern Australia, but has become naturalized in eastern Australia and in countries around the world. Previous studies have investigated the introduction sources for P. lophantha subsp. lophantha overseas, but here, we expand on the knowledge of genetic patterns in its native and naturalized range in Australia. Genetic patterns were examined using nine nuclear microsatellite loci and three chloroplast DNA markers. The native populations exhibited phylogeographic patterns, including north-south differentiation, and a genetic signal related to temperature gradients. Naturalized Australian populations displayed lower overall genetic variation and no phylogeographic patterns. Several naturalized populations separated by large distances (350–650 km) shared multi-locus genotypes, supporting the notion of a shared source of germplasm and possible inbreeding due to human-mediated introductions from a limited number of individuals and/or source populations within the native range. We advocate that management strategies are tailored to the distinct conservation aims underpinning conservation in native or naturalized populations. Within the native distribution, management should have a long-term aim to replicate historical evolutionary processes, whereas in naturalized populations, immediate actions may be required to reduce the abundance of P. lophantha subsp. lophantha and minimize its invasive impact on the recipient vegetation.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1025
Author(s):  
Jeremias Götz ◽  
Konstantin V. Krutovsky ◽  
Ludger Leinemann ◽  
Markus Müller ◽  
Om P. Rajora ◽  
...  

Northern red oak (Quercus rubra L.) is one of the most important foreign tree species in Germany and considered as a major candidate for prospective sustainable forestry in the face of climate change. Therefore, Q. rubra was subject of many previous studies on its growth traits and attempts to infer the origin of various populations of this species using nuclear and chloroplast DNA markers. However, the exact geographic origin of German red oak stands has still not been identified. Its native range widely extends over North America, and the species can tolerate a broad range of environmental conditions. We genotyped individual trees in 85 populations distributed in Germany and North America using five chloroplast microsatellite and three novel chloroplast CAPS markers, resulting in the identification of 29 haplotypes. The new marker set enabled the identification of several new red oak haplotypes with restricted geographic origin. Some very rare haplotypes helped us narrow down the origin of Q. rubra stands in Germany, especially some stands from North Rhine-Westphalia, to the northern part of the species’ natural distribution area including the Peninsula of Nova Scotia, where the most similar haplotype composition was observed, compared to distinct German stands.


2020 ◽  
Vol 66 (4) ◽  
pp. 403-415
Author(s):  
Georgios Varsamis ◽  
Theodora Merou ◽  
Ioannis Takos ◽  
Chrisovalantis Malesios ◽  
Apostolos Manolis ◽  
...  

Abstract Fagus sylvatica in Europe is expected to be severely affected by the ongoing climate change. In this article, seed adaptive traits, in terms of morphology and germination, of F. sylvatica populations of different postglacial lineage and intrapopulation genetic diversity were evaluated. Eight plots from two geographical provenances, Evros and Drama, were selected. Provenance shaped both morphology and germination patterns, but the effect was more pronounced on germination. Seeds from Drama were larger and heavier than those from Evros but exhibited a higher degree of dormancy and slower germination. High among-plots variability on morphology and germination was also observed, especially in Evros. This higher variability was consistent with the higher level of genetic diversity observed at genomic and chloroplast DNA markers at small or larger spatial scales from previous published studies on the same plots. Results suggested the existence of different seed adaptation strategies, mainly between provenances, as a result of possible adaptation to different environmental conditions, whereas a possible influence of a generally complex pattern of admixture between different beech subspecies and postglacial lineages could not be excluded.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Frank Maixner

ABSTRACT Understanding dietary effects on the gut microbial composition is one of the key questions in human microbiome research. It is highly important to have reliable dietary data on the stool samples to unambiguously link the microbiome composition to food intake. Often, however, self-reported diet surveys have low accuracy and can be misleading. Thereby, additional molecular biology-based methods could help to revise the diet composition. The article by Reese et al. [A. T. Reese, T. R. Kartzinel, B. L. Petrone, P. J. Turnbaugh, et al., mSystems 4(5):e00458-19, 2019, https://doi.org/10.1128/mSystems.00458-19] in a recent issue of mSystems describes a DNA metabarcoding strategy targeting chloroplast DNA markers in stool samples from 11 human subjects consuming both controlled and freely selected diets. The aim of this study was to evaluate the efficiency of this molecular method in detecting plant remains in the sample compared to the written dietary records. This study displays an important first step in implementing molecular dietary reconstructions in stool microbiome studies which will finally help to increase the accuracy of dietary metadata.


Sign in / Sign up

Export Citation Format

Share Document