scholarly journals In Vitro Enzymatic Electrochemical Monitoring of Glucose Metabolism and Production in Rat Primary Hepatocytes on Highly O2 Permeable Plates

2021 ◽  
pp. 107972
Author(s):  
Kikuo Komori ◽  
Masataka Usui ◽  
Kohei Hatano ◽  
Yuma Hori ◽  
Keita Hirono ◽  
...  
2019 ◽  
Vol 316 (4) ◽  
pp. E578-E589 ◽  
Author(s):  
Shilpa R. Nagarajan ◽  
Moumita Paul-Heng ◽  
James R. Krycer ◽  
Daniel J. Fazakerley ◽  
Alexandra F. Sharland ◽  
...  

The liver is a critical tissue for maintaining glucose, fatty acid, and cholesterol homeostasis. Primary hepatocytes represent the gold standard for studying the mechanisms controlling hepatic glucose, lipid, and cholesterol metabolism in vitro. However, access to primary hepatocytes can be limiting, and therefore, other immortalized hepatocyte models are commonly used. Here, we describe substrate metabolism of cultured AML12, IHH, and PH5CH8 cells, hepatocellular carcinoma-derived HepG2s, and primary mouse hepatocytes (PMH) to identify which of these cell lines most accurately phenocopy PMH basal and insulin-stimulated metabolism. Insulin-stimulated glucose metabolism in PH5CH8 cells, and to a lesser extent AML12 cells, responded most similarly to PMH. Notably, glucose incorporation in HepG2 cells were 14-fold greater than PMH. The differences in glucose metabolic activity were not explained by differential protein expression of key regulators of these pathways, for example glycogen synthase and glycogen content. In contrast, fatty acid metabolism in IHH cells was the closest to PMHs, yet insulin-responsive fatty acid metabolism in AML12 and HepG2 cells was most similar to PMH. Finally, incorporation of acetate into intracellular-free cholesterol was comparable for all cells to PMH; however, insulin-stimulated glucose conversion into lipids and the incorporation of acetate into intracellular cholesterol esters were strikingly different between PMHs and all tested cell lines. In general, AML12 cells most closely phenocopied PMH in vitro energy metabolism. However, the cell line most representative of PMHs differed depending on the mode of metabolism being investigated, and so careful consideration is needed in model selection.


Author(s):  
P.R. Harbach ◽  
C.S. Aaron ◽  
S.K. Wiser ◽  
C.R. Grzegorczyk ◽  
A.L. Smith

2008 ◽  
Vol 28 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Hiromi Suzuki ◽  
Tomoaki Inoue ◽  
Tomochika Matsushita ◽  
Kazuko Kobayashi ◽  
Ikuo Horii ◽  
...  

2020 ◽  
Vol 52 (09) ◽  
pp. 669-675
Author(s):  
Jing Lu ◽  
Han Shen ◽  
Qi Li ◽  
Feng-Ran Xiong ◽  
Ming-Xia Yuan ◽  
...  

AbstractAdult patients with a dysfunctional ether-a-go-go 2 (hERG2) protein, which is encoded by the KCNH6 gene, present with hyperinsulinemia and hyperglycemia. However, the mechanism of KCNH6 in glucose metabolism disorders has not been clearly defined. It has been proposed that sustained endoplasmic reticulum (ER) stress is closely concerned with hepatic insulin resistance and inflammation. Here, we demonstrate that Kcnh6 knockout (KO) mice had impaired glucose tolerance and increased levels of hepatic apoptosis, in addition to displaying an increased insulin resistance that was mediated by high ER stress levels. By contrast, overexpression of KCNH6 in primary hepatocytes led to a decrease in ER stress and apoptosis induced by thapsigargin. Similarly, induction of Kcnh6 by tail vein injection into KO mice improved glucose tolerance by reducing ER stress and apoptosis. Furthermore, we show that KCNH6 alleviated hepatic ER stress, apoptosis, and inflammation via the NFκB-IκB kinase (IKK) pathway both in vitro and in vivo. In summary, our study provides new insights into the causes of ER stress and subsequent induction of primary hepatocytes apoptosis.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Author(s):  
Agung Biworo ◽  
Dwi Rezki Amalia ◽  
Gratianus Billy Himawan ◽  
Lisda Rizky Amalia ◽  
Valentina Halim ◽  
...  

The objectives of this study were to determine the effect of cadmium (Cd) on glucose metabolism disruption in liver cells homogenate in vitro. The glucose metabolism disruption was analyzed by measuring the level of liver glucose, glycogen and methylglyoxal (MG), and the activity of glucokinase activity. In this experiment, a liver sample was taken from male rats (Rattus novergicus). Samples then homogenized and divided into four groups with; C served as control which contains liver homogenate only; T1 which contains liver homogenate + 0.03 mg/l of cadmium sulphate (CdSO4); T2 which contains liver homogenate + 0.3 mg/l of CdSO4; and T3 which contains liver homogenate + 3 mg/l of CdSO4. After treatment, liver glucose, glycogen, and MG levels, and glucokinase activity were estimated. The activity of liver glucokinase was estimated by measuring the Michaelis-Menten constant (Km) value. The results revealed that Cd exposure could significantly increase glucose and MG levels, the Km value of glucokinase, and decreased the glycogen level in liver cells (P>0.05). These results indicated that Cd exposure induced the disruption of glucose metabolism in the liver.


Sign in / Sign up

Export Citation Format

Share Document