Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle

Biomaterials ◽  
2005 ◽  
Vol 26 (28) ◽  
pp. 5600-5608 ◽  
Author(s):  
Naoki Kondo ◽  
Akira Ogose ◽  
Kunihiko Tokunaga ◽  
Tomoyuki Ito ◽  
Katsumitsu Arai ◽  
...  
2011 ◽  
Vol 493-494 ◽  
pp. 132-134 ◽  
Author(s):  
Masataka Sakane ◽  
T. Tsukanishi ◽  
T. Funayama ◽  
M. Kobayashi ◽  
N. Ochiai

In the present study, we have newly developed an artificial bone substitute, which is unidirectional porous β-tricalcium phosphate (UDPTCP). The objective of this study was to examine the effects of high and low porosity substitutes on the balance between new bone formation and β-TCP absorption. Materials and MethodsSix male Japanese white rabbits (weight 3.1–3.5 kg, approximately 18– 21 weeks old) were used for this study. Intra-venous injection of pent barbiturate was administered and the both medial and lateral femoral condyle were exposed. A hole of 5 mm diameter was drilled to a depth of 12 mm in the metaphysis, perpendicular to the long axis of the femur. (Figure 1) Figure 1. Operation procedureIn the next step, a cylindrical UDPTCP test piece measuring 4.8 × 11 mm was implanted in the holes. Within the bone substitute, unidirectional pores ranging from 100 to 300 μm in diameter were made. This unique architecture fostered transmission of fluids and cells into the piece. In this case, the test piece was implanted into the bone perpendicular to the long axis of the femur, and the orientation of uni-directional pore was parallel to the long axis of femur. We prepared two different test pieces having low (69%) and high (74%) porosities. Half of the animals were sacrificed at 3 weeks after the operation and the remaining half at 6 weeks. After removal of the femoral condyle, the specimen was fixed in formalin and demineralized. Specimens were obtained from the central axis of the cylindrical piece as well as from the lateral or medial surfaces at a distance of 4 mm from midline. The histological samples were prepared for H&E and TRAP staining. Results and Discussion  At 3 weeks interval, woven bone, which was formed along the wall of the substitute, could be observed by H&E staining in both low and high porosity substitutes (Figure 2a, 2b). In addition, there were osteoblast-like cells lining the newly formed bone surface with extensive capillary formation (Figure 3). At 6 weeks, the β-TCP walls had thinned and bone had matured in both the groups (Figure 4a, 4b). However, in the high-porosity group, β-TCP absorption tended to be more prominent (Figure 4). In addition, it was observed that at the center of the piece, β-TCP absorption was more prominent than that in the 4 mm-area obtained from the lateral or medial surfaces. At 3 and 6 weeks interval, activities of osteoclast-like multinuclear cells were seen on the surface of the pore wall as observed by TRAP staining. Figure 2a. Low porosity (69%) Figure 2b. High porosity (74%) Fig.2a and Fig.2b H&E staining (×12.5) after 3 weeks (center of the specimen)Figure 3. Formation of woven bone with osteoblast-like cells lining the low porosity specimen at 3 weeks. (H&E staining ×400) Figure 4a. Low porosity Figure 4b. High porosityFig.4a and Fig. 4b H&E staining at 6 weeks after implantation. In high porosity, dense-pink staining areas are located at peripheral in the field.Figure 5. TRAP-positive multinuclear cells (black arrow) were seen on the wall and in the capillaries.Conclusions The UDPTCP implanted in the medullar canal of the femur was absorbed by multinuclear cells and quickly replaced by the newly formed bone. Our results are consistent with those of other studies using porous β-TCP [1]. In our preparation, porosity had certain effects on the balance between bone formation and β-TCP absorption. Because of the unique architecture of unidirectional pores within the β-TCP specimen as well as easy formation of capillary network and access to osteoclasts may have accelerated absorption of the substitute. UDPTCP is very promising scaffolding material for bone regeneration. However, optimization of the porosity of UDPTCP in accordance with its application site is necessary before its clinical use. Reference[1] Naoki Kondo, Akira Ogose, Kunihiko Tokunaga, Tomoyuki Ito, Katsumitsu Arai, Naoko Kudo, Hikaru Inoue, Hiroyuki Irie, Naoto Endo: Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials 26: 5600-5608, October 2005.


2008 ◽  
Vol 396-398 ◽  
pp. 7-10 ◽  
Author(s):  
Ana Maria Minarelli Gaspar ◽  
Sybele Saska ◽  
R. García Carrodeguas ◽  
A.H. De Aza ◽  
P. Pena ◽  
...  

The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP15), containing crystalline α-TCP and β-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


2005 ◽  
Vol 10 (3) ◽  
pp. 308-314 ◽  
Author(s):  
Michinaga Masuzawa ◽  
Moroe Beppu ◽  
Shoji Ishii ◽  
Yuichiro Oyake ◽  
Haruhito Aoki ◽  
...  

2018 ◽  
Vol 16 (3) ◽  
pp. 126-136 ◽  
Author(s):  
Preeti Makkar ◽  
Swapan Kumar Sarkar ◽  
Andrew R. Padalhin ◽  
Byoung-Gi Moon ◽  
Young Seon Lee ◽  
...  

Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg–Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg– xCa alloy ( x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. Methods: Microstructural evolutions for Mg– xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg– xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. Results: Microstructural results showed the enhancement in intermetallic Mg2Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg–5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg–0.5Ca after 4 weeks of implantation compared with Mg–5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg–5.0Ca compared with Mg–0.5Ca alloy. Conclusions: The results suggest that Mg–0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.


Sign in / Sign up

Export Citation Format

Share Document