Bone formation and bioresorption after implantation of injectable ?-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects

2004 ◽  
Vol 70A (4) ◽  
pp. 542-549 ◽  
Author(s):  
Masaaki Chazono ◽  
Takaaki Tanaka ◽  
Hirokazu Komaki ◽  
Katsuyuki Fujii
2014 ◽  
Vol 17 (4) ◽  
pp. 344-351 ◽  
Author(s):  
Sungjin Choi ◽  
I-Li Liu ◽  
Kenichi Yamamoto ◽  
Muneki Honnami ◽  
Shinsuke Ohba ◽  
...  

2005 ◽  
Vol 26 (2) ◽  
pp. 51-59 ◽  
Author(s):  
Kiyoto SHIRATORI ◽  
Kenichi MATSUZAKA ◽  
Yoshihiko KOIKE ◽  
Satoshi MURAKAMI ◽  
Masaki SHIMONO ◽  
...  

2007 ◽  
Vol 361-363 ◽  
pp. 1261-1264
Author(s):  
C.S. Lim ◽  
S.G. Kim ◽  
Sung Chul Lim

We evaluated the bone healing effect of grafting with synthetic β-tricalcium phosphate (β-TCP; Cerasorb®), bovine-derived hydroxyapatite (HA; Bio-Oss®), and a mixture of β-TCP and HA in rats. Each material was grafted in prepared 8-mm frontal bone defects in 15 rats. The control group underwent surgery without any grafting materials and was examined after 4 weeks, whereas the experimental groups received grafting materials and were examined after 1, 2, and 4 weeks. After implantation, the rats were sacrificed for histomorphometric studies using light microscopy, and the data were analyzed using analysis of variance. Considerable inflammation and fibrosis were observed after 1 and 2 weeks in all experimental groups, whereas the inflammation was reduced and fibrosis was stabilized after 4 weeks. New bone formation was observed at the defect margin. Statistically, there was no difference in new bone formation among the three experimental groups. In conclusion, there was no difference in new bone formation using Bio-Oss®, Cerasorb®, and a mixture of Bio-Oss® and Cerasorb®.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijia Cheng ◽  
Tianchang Lin ◽  
Ahmad Taha Khalaf ◽  
Yamei Zhang ◽  
Hongyan He ◽  
...  

AbstractNowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% β-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 952
Author(s):  
Fabien Bornert ◽  
François Clauss ◽  
Guoqiang Hua ◽  
Ysia Idoux-Gillet ◽  
Laetitia Keller ◽  
...  

One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients.


2021 ◽  
Vol 11 (1) ◽  
pp. 395
Author(s):  
Antonio Scarano ◽  
Francesco Inchingolo ◽  
Biagio Rapone ◽  
Alberta Greco Lucchina ◽  
Erda Qorri ◽  
...  

Purpose: The aim of the present study is to evaluate the influence and efficacy of autologous platelets on bone regeneration in a rabbit defects model. Materials and Methods: A total of 12 critical size tibial defects were produced in six New Zealand rabbits: A total of six defects were filled with autologous platelet gel (APG) and six defects were maintained as untreated controls. No membranes were used to cover the bone osteotomies. The histology and histomorphometry were performed at four weeks on retrieved samples of both groups. Results: No complications were reported in any of the animals nor for the defects produced. A significantly higher lamellar and woven bone percentage was reported for the APG group with a lower level of marrow spaces (p < 0.05). Evidence of newly formed bone was found in the superficial portion of the bone defect of APG samples where no aspects of bone resorption were observed. Conclusions: The evidence of the present research revealed that APG increases new bone formation restricted to the cortical portion and induces more rapid healing in rabbit bone defects than in untreated defects.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 156
Author(s):  
Steffen Esslinger ◽  
Axel Grebhardt ◽  
Jonas Jaeger ◽  
Frank Kern ◽  
Andreas Killinger ◽  
...  

Bone defects introduced by accidents or diseases are very painful for the patient and their treatment leads to high expenses for the healthcare systems. When a bone defect reaches a critical size, the body is not able to restore this defect by itself. In this case a bone graft is required, either an autologous one taken from the patient or an artificial one made of a bioceramic material such as calcium phosphate. In this study β-tricalcium phosphate (β-TCP) was dispersed in a polymer matrix containing poly(lactic acid) (PLA) and poly(ethylene glycole) (PEG). These compounds were extruded to filaments, which were used for 3D printing of cylindrical scaffolds via Fused Deposition of Ceramics (FDC) technique. After shaping, the printed parts were debindered and sintered. The components combined macro- and micropores with a pore size of 1 mm and 0.01 mm, respectively, which are considered beneficial for bone healing. The compressive strength of sintered cylindrical scaffolds exceeded 72 MPa at an open porosity of 35%. The FDC approach seems promising for manufacturing patient specific bioceramic bone grafts.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


Sign in / Sign up

Export Citation Format

Share Document