pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations

Biomaterials ◽  
2006 ◽  
Vol 27 (14) ◽  
pp. 2787-2797 ◽  
Author(s):  
Fu-Jian Xu ◽  
En-Tang Kang ◽  
Koon-Gee Neoh
2016 ◽  
Vol 136 ◽  
pp. 300-306 ◽  
Author(s):  
Kaiwen Yang ◽  
Sicheng Wan ◽  
Binbin Chen ◽  
Wenxia Gao ◽  
Jiuxi Chen ◽  
...  

2016 ◽  
Vol 4 (25) ◽  
pp. 4430-4438 ◽  
Author(s):  
Jin-Tao Wang ◽  
Yanhang Hong ◽  
Xiaotian Ji ◽  
Mingming Zhang ◽  
Li Liu ◽  
...  

Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.


Langmuir ◽  
2016 ◽  
Vol 32 (21) ◽  
pp. 5314-5323 ◽  
Author(s):  
Sergey K. Filippov ◽  
Anna Bogomolova ◽  
Leonid Kaberov ◽  
Nadiia Velychkivska ◽  
Larisa Starovoytova ◽  
...  

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Anna Korytkowska-Wałach ◽  
Anna Porwoł ◽  
Mirosław Gibas

AbstractA series of hydrogels were synthesized: homopolymers of new temperature-sensitive methacrylate macromonomers of ether-ester structure, derived from monomethacrylate of tetraethylene glycol via Michael-type addition - oligo(TTEGMMA), and copolymers of oligo(TTEGMMA) with N-isopropylacrylamide (NIPAAm) or 2-hydroxyethyl methacrylate (HEMA). Hydrogels based on oligo(TTEGMMA) demonstrate broad volume phase transition. Combination of oligo(TTEGMMA) with NIPAAm or HEMA yielded hydrogels having narrower phase transition and lower gel transition temperature (LGTT) up to 43 °C at the most, which is in the range of interest for most biomedical applications.


Author(s):  
Asiya Mustafina ◽  
Julia Elistratova ◽  
Lucia Zakharova ◽  
Yuliana Kudryashova ◽  
Olga Bochkova ◽  
...  

2014 ◽  
Vol 79 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Yong Liu ◽  
Yingde Cui ◽  
Guojie Wu ◽  
Miaochan Liao

The interpenetrating polymer network of fast temperature-responsive hydrogels based on soy protein and poly(N-isopropylacrylamide) were successfully prepared using the sodium bicarbonate (NaHCO3) solutions as the reaction medium. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermal gravimetric analysis. The swelling and deswelling kinetics were also investigated in detail. The results have shown that the proposed hydrogels had high porous structure, good miscibility and thermal stability, and fast temperature responsivity. The presence of NaHCO3 had little effect on the volume phase transition temperature (VPTT) of the hydrogels, and the VPTTs were at about 32?C. Compared with the traditional hydrogels, the proposed hydrogels had much faster swelling and deswelling rate. The swelling mechanism of the hydrogels was the non-Fickian diffusion. This fast temperature-responsive hydrogels may have potential applications in the field of biomedical materials.


Sign in / Sign up

Export Citation Format

Share Document