In Situ Crosslinking Temperature-Responsive Hydrogels with Improved Delivery, Swelling, and Elasticity for Endovascular Embolization

2019 ◽  
Author(s):  
Derek J. Overstreet ◽  
Amrita Pal ◽  
Brent L. Vernon ◽  
Elizabeth J. Lee
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2016 ◽  
Vol 136 ◽  
pp. 300-306 ◽  
Author(s):  
Kaiwen Yang ◽  
Sicheng Wan ◽  
Binbin Chen ◽  
Wenxia Gao ◽  
Jiuxi Chen ◽  
...  

Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Anna Korytkowska-Wałach ◽  
Anna Porwoł ◽  
Mirosław Gibas

AbstractA series of hydrogels were synthesized: homopolymers of new temperature-sensitive methacrylate macromonomers of ether-ester structure, derived from monomethacrylate of tetraethylene glycol via Michael-type addition - oligo(TTEGMMA), and copolymers of oligo(TTEGMMA) with N-isopropylacrylamide (NIPAAm) or 2-hydroxyethyl methacrylate (HEMA). Hydrogels based on oligo(TTEGMMA) demonstrate broad volume phase transition. Combination of oligo(TTEGMMA) with NIPAAm or HEMA yielded hydrogels having narrower phase transition and lower gel transition temperature (LGTT) up to 43 °C at the most, which is in the range of interest for most biomedical applications.


2014 ◽  
Vol 79 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Yong Liu ◽  
Yingde Cui ◽  
Guojie Wu ◽  
Miaochan Liao

The interpenetrating polymer network of fast temperature-responsive hydrogels based on soy protein and poly(N-isopropylacrylamide) were successfully prepared using the sodium bicarbonate (NaHCO3) solutions as the reaction medium. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermal gravimetric analysis. The swelling and deswelling kinetics were also investigated in detail. The results have shown that the proposed hydrogels had high porous structure, good miscibility and thermal stability, and fast temperature responsivity. The presence of NaHCO3 had little effect on the volume phase transition temperature (VPTT) of the hydrogels, and the VPTTs were at about 32?C. Compared with the traditional hydrogels, the proposed hydrogels had much faster swelling and deswelling rate. The swelling mechanism of the hydrogels was the non-Fickian diffusion. This fast temperature-responsive hydrogels may have potential applications in the field of biomedical materials.


Sign in / Sign up

Export Citation Format

Share Document