scholarly journals Three-dimensional filamentous human diseased cardiac tissue model

Biomaterials ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 1367-1377 ◽  
Author(s):  
Zhen Ma ◽  
Sangmo Koo ◽  
Micaela A. Finnegan ◽  
Peter Loskill ◽  
Nathaniel Huebsch ◽  
...  
2002 ◽  
Vol 7 (7) ◽  
pp. 419-425 ◽  
Author(s):  
Barbara T Navé ◽  
Michael Becker ◽  
Volker Roenicke ◽  
Thomas Henkel

2000 ◽  
Vol 78 (6) ◽  
pp. 2761-2775 ◽  
Author(s):  
Zhilin Qu ◽  
Jong Kil ◽  
Fagen Xie ◽  
Alan Garfinkel ◽  
James N. Weiss

2017 ◽  
Vol 9 (2) ◽  
pp. 025011 ◽  
Author(s):  
Hong Fang Lu ◽  
Meng Fatt Leong ◽  
Tze Chiun Lim ◽  
Ying Ping Chua ◽  
Jia Kai Lim ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Sonia Trombino ◽  
Federica Curcio ◽  
Roberta Cassano ◽  
Manuela Curcio ◽  
Giuseppe Cirillo ◽  
...  

Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.


1998 ◽  
Vol 27 (6) ◽  
pp. 482-484 ◽  
Author(s):  
Gert Santler ◽  
Hans Kaercher ◽  
Alexander Gaggl ◽  
Guenter Schultes

Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 735-744 ◽  
Author(s):  
Yamin Yang ◽  
Xiaochuan Yang ◽  
Jin Zou ◽  
Chao Jia ◽  
Yue Hu ◽  
...  

A microfluidic-based in vitro three-dimensional (3D) breast cancer tissue model was established for determining the efficiency of photodynamic therapy (PDT) with therapeutic agents (photosensitizer and gold nanoparticles) under various irradiation conditions.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Katsuhisa Matsuura ◽  
Tatsuya Shimizu ◽  
Nobuhisa Hagiwara ◽  
Teruo Okano

We have developed an original scaffold-free tissue engineering approach, “cell sheet engineering”, and this technology has been already applied to regenerative medicine of various organs including heart. As the bioengineered three-dimensional cardiac tissue is expected to not only function for repairing the broad injured heart but also to be the practicable heart tissue models, we have developed the cell sheet-based perfusable bioengineered three-dimensional cardiac tissue. Recently we have also developed the unique suspension cultivation system for the high-efficient cardiac differentiation of human iPS cells. Fourteen-day culture with the serial treatments of suitable growth factors and a small compound in this stirring system with the suitable dissolved oxygen concentration produced robust embryoid bodies that showed the spontaneous beating and were mainly composed of cardiomyocytes (~80%). When these differentiated cells were cultured on temperature-responsive culture dishes after the enzymatic dissociation, the spontaneous and synchronous beating was observed accompanied with the intracellular calcium influx all over the area even after cell were detached from culture dishes as cell sheets by lowering the culture temperature. The cardiac cell sheets were mainly composed of cardiomyocytes (~80%) and partially mural cells (~20%). Furthermore, extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid, and this propagation was inhibited by the treatment with some anti-arrhythmic drugs. When the triple layered cardiac tissue was transplanted onto the subcutaneous tissue of nude rats, the spontaneous pulsation was observed over 2 months and engrafted cardiomyocytes were vascularized with the host tissue-derived endothelial cells. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue. Now we are developing the vascularized thickened human cardiac tissue by the repeated layering of cardiac cell sheets on the artificial vascular bed in vitro.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Yoshikazu Kameda ◽  
Surachada Chuaychob ◽  
Miwa Tanaka ◽  
Yang Liu ◽  
Ryu Okada ◽  
...  

Three-dimensional (3D) tissue culture is a powerful tool for understanding physiological events. However, 3D tissues still have limitations in their size, culture period, and maturity, which are caused by the...


Sign in / Sign up

Export Citation Format

Share Document