scholarly journals Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Sonia Trombino ◽  
Federica Curcio ◽  
Roberta Cassano ◽  
Manuela Curcio ◽  
Giuseppe Cirillo ◽  
...  

Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.

2020 ◽  
Vol 318 ◽  
pp. 01045
Author(s):  
Gokhan Ates

In tissue engineering, three-dimensional functional scaffolds with tailored biological properties are needed to be able to mimic the hierarchical structure of biological tissues. Recent developments in additive biomanufacturing allow to extrude multiple materials enabling the fabrication of more sophisticated tissue constructs. These multi-material biomanufacturing systems comprise multiple printing heads through which individual materials are sequentially printed. Nevertheless, as more printing heads are added the fabrication process significantly decreases, since it requires mechanical switching among the physically separated printheads to enable printing multiple materials. In addition, this approach is not able to create biomimetic tissue constructs with property gradients. To address these limitations, this paper presents a novel static mixing extrusion printing head to enable the fabrication of multi-material, functionally graded structures using a single nozzle. Computational fluid dynamics (CFD) was used to numerically analyze the influence of Reynolds number on the flow pattern of biomaterials and mixing efficiency considering different miscible materials.


2008 ◽  
Vol 55-57 ◽  
pp. 685-688 ◽  
Author(s):  
J. Chamchongkaset ◽  
Sorada Kanokpanont ◽  
David L. Kaplan ◽  
Siriporn Damrongsakkul

Silk has been used commercially as biomedical sutures for decades. Recently silk fibroin, especially from Bombyx mori silkworm, has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility and mechanical properties. In Thailand, Thai native silkworms have been long cultivated. Distinct characteristics of cocoon Thai silk are its yellow color and coarse filament. There is more sericin in Thai silk than in other Bombyx mori silks. These characteristics provide Thai silk a unique texture for textile industry. It is therefore the aim of this study to develop three-dimensional silk fibroin-based scaffolds from Thai yellow cocoon “Nangnoi-Srisaket” of Bombyx mori silkworms using salt-leaching method. To enhance the biological properties, type A gelatin, the denature form of collagen having good biocompactibility, was used to conjugate with silk fibroin scaffolds. The pore size of salt-leached silk fibroin scaffold structure represented the size of salt crystals used (600-710µm). After gelatin conjugation, gelatin was partly formed fibers inside the pores of silk fibroin scaffolds resulting in fiber-like structure with highly interconnection. Gelatin conjugation enhanced the compressive modulus of silk fibroin scaffolds by 93%. The results on in vitro culture using mouse osteoblast-like cells (MC3T3-E1) showed that gelatin conjugation could promote the cell proliferation in silk fibroin scaffolds. Moreover, the observed morphology of cells proliferated inside the scaffold after 14 days of culture showed the larger spreading area of cells on conjugated gelatin/silk fibroin scaffolds, compared to round-shaped cells on silk fibroin scaffolds. The results implied that Thai silk fibroin looked promising to be applied in tissue engineering and gelatin conjugation on Thai silk fibroin scaffolds could enhance the biological properties of scaffolds.


2006 ◽  
Vol 41 (4) ◽  
pp. 742-742
Author(s):  
A.N. Morritt ◽  
R.J. Dilley ◽  
J. Rickards ◽  
X.L. Han ◽  
D. McCombe ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 188-204 ◽  
Author(s):  
Nitin B. Charbe ◽  
Flavia C. Zacconi ◽  
Nikhil Amnerkar ◽  
Dinesh Pardhi ◽  
Priyank Shukla ◽  
...  

Three-dimensional (3D) printing, also known as additive manufacturing, was developed originally for engineering applications. Since its early advancements, there has been a relentless development in enthusiasm for this innovation in biomedical research. It allows for the fabrication of structures with both complex geometries and heterogeneous material properties. Tissue engineering using 3D bio-printers can overcome the limitations of traditional tissue engineering methods. It can match the complexity and cellular microenvironment of human organs and tissues, which drives much of the interest in this technique. However, most of the preliminary evaluations of 3Dprinted tissues and organ engineering, including cardiac tissue, relies extensively on the lessons learned from traditional tissue engineering. In many early examples, the final printed structures were found to be no better than tissues developed using traditional tissue engineering methods. This highlights the fact that 3D bio-printing of human tissue is still very much in its infancy and more work needs to be done to realise its full potential. This can be achieved through interdisciplinary collaboration between engineers, biomaterial scientists and molecular cell biologists. This review highlights current advancements and future prospects for 3D bio-printing in engineering ex vivo cardiac tissue and associated vasculature, such as coronary arteries. In this context, the role of biomaterials for hydrogel matrices and choice of cells are discussed. 3D bio-printing has the potential to advance current research significantly and support the development of novel therapeutics which can improve the therapeutic outcomes of patients suffering fatal cardiovascular pathologies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1587
Author(s):  
Caterina Cristallini ◽  
Emanuela Vitale ◽  
Claudia Giachino ◽  
Raffaella Rastaldo

To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.


2015 ◽  
Vol 3 (42) ◽  
pp. 8337-8347 ◽  
Author(s):  
P. Newman ◽  
Z. Lu ◽  
S. I. Roohani-Esfahani ◽  
T. L. Church ◽  
M. Biro ◽  
...  

A method to coat high-quality uniform coatings of carbon nanotubes throughout 3D porous structures is developed. Testing of their physical and biological properties demonstrate their potential for application in tissue engineering.


2012 ◽  
Vol 303 (2) ◽  
pp. H133-H143 ◽  
Author(s):  
Thomas Eschenhagen ◽  
Alexandra Eder ◽  
Ingra Vollert ◽  
Arne Hansen

Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.


2010 ◽  
Vol 76 ◽  
pp. 114-124
Author(s):  
Seeram Ramakrishna ◽  
Jayarama Reddy Venugopal ◽  
Susan Liao

Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of extracellular matrix (ECM) for tissue/organ regeneration. Nanofibers with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structure. Studies on cell-nanofiber interactions have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Our recent data showed that hematopoietic stem cells (HSCs) as well as mesenchymal stem cells (MSCs) can rapidly and effectively attached to the functionalized nanofibers. Mineralized 3D nanofibrous scaffold with bone marrow derived MSCs has been applied for bone tissue engineering. The use of injectable nanofibers for cardiac tissue engineering applications is attractive as they allow for the encapsulation of cardiomyocytes/MSCs as well as bioactive molecules for the repair of myocardial infarction. Duplicate 3D heart helix microstructure by the nanofibrous cardiac patch might provide functional support for infarcted myocardium. Furthermore, clinical applications of electrospun nanofibers for regenerative medicine are highly feasible due to the ease and flexibility of fabrication with the cost-effective method of making nanofibers.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Marium Romany Abdelsayed ◽  
Suzi Sobhy Atalla ◽  
Gehan Khalaf Megahed ◽  
Asmaa Abd El-Monem Abo Zeid

Abstract Introduction With the increase of end stage lung diseases and the great problems facing lung transplantation tissue engineering become a promising solution. The first step in lung engineering is to obtain a 3D Extracellular matrix lung scaffold via decellularization. Decellularization aims to remove cells from tissue ultrastructure while preserving the mechanical and biological properties of the tissue. Intact ECM provides critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. Objectives This study aimed to obtain an intact and well-preserved ECM lung scaffold by decellularization of rat lungs. Methods Decellularization of lungs of ten Wistar rats was achieved by perfusing detergents through the pulmonary artery. The resultant scaffolds were fixed and analyzed histologically. Results It was found that the decellularization process effectively removed the cellular and nuclear material while retaining native the 3D ECM of lung tissue. The architecture of the collagen and elastic fibers networks were preserved as comparable to the native lungs. Furthermore, the basement membranes of the bronchiolar and interalveolar septa were intact. Conclusions This methodology is expected to allow decellularization of human lung tissues and permits future scientific exploration in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document