Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering

Biomaterials ◽  
2021 ◽  
pp. 121041
Author(s):  
Yuankun Zhai ◽  
Kevin Schilling ◽  
Tao Wang ◽  
Mirna El Khatib ◽  
Sergei Vinogradov ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1749
Author(s):  
Filip Simunovic ◽  
Günter Finkenzeller

Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.


2016 ◽  
Vol 720 ◽  
pp. 58-64 ◽  
Author(s):  
Doaa Adel-Khattab ◽  
Marian Kampsculte ◽  
Barbara Peleska ◽  
Renate Gildenhaar ◽  
Georg Berger ◽  
...  

Early establishment of angiogenesis is critical for bone tissue engineering. Recently, a technique was introduced, which is based on the idea of using axial vascularization of the host tissues in engineered grafts, namely the “intrinsic angiogenesis chamber” technique, which utilizes an artery and a vein to construct an AV-Bundle. The aim of this study was to evaluate the effect of varying scaffold architecture of calcium alkali orthophosphate scaffolds (CAOP), resulting from two different fabrication procedures, namely 3D printing (RP) or a Schwarzwalder-Somers replica technique (SSM), on angiogenesis in vivo when combining a microvascular technique with bioceramic scaffolds colonized with stem cells for bone tissue engineering. 32 adult female Wistar rats, in which critical size segmental discontinuity defects 6 mm in length were created in the left femur, were divided into 4 groups, group 1 received a RP scaffold colonized with rat stem cells after 7d of dynamic cell culture and an AV-Bundle (AVB), group 2 a SSM scaffold with rat stem cells after 7d of dynamic cell culture and an AVB, group 3 a RP control scaffold (without cells and AVB), group 4 a SSM control scaffold (without cells and AVB). After 3 and 6 months, angiomicro-CT after perfusion with a contrast agent, image reconstruction, histomorphometric and immunohistochemical analysis utilizing antibodies to collagen IV, vWF and CD-31 were performed. At 6 months, a statistically significant higher blood vessel volume%, blood vessel surface/volume, blood vessel thickness, blood vessel density and blood vessel linear density was observed with RP scaffolds with cells and AVB than with the other groups. At 6 mths, RP with cells and AVB displayed the highest expression of collagen IV (score 2.75), CD31 (score 2.75) and vWF (score 2.6), which is indicative of highly dense blood vessels. Both angio-CT and immunohistochemical analysis demonstrated that AVB is an efficient technique for achieving scaffold vascularization in critical size segmental defects after 3 and 6 months of implantation.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


2016 ◽  
Vol 12 (2) ◽  
pp. 103-123 ◽  
Author(s):  
Alexander Leiendecker ◽  
Steffen Witzleben ◽  
Margit Schulze ◽  
Edda Tobiasch

Author(s):  
Hanieh Nokhbatolfoghahaei ◽  
Maryam Rezai Rad ◽  
Mohammad-Mehdi Khani ◽  
Shayan Shahriari ◽  
Nasser Nadjmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document