Optimised expression cassettes of hpt marker gene for biolistic transformation of Miscanthus sacchariflorus

2019 ◽  
Vol 127 ◽  
pp. 105255
Author(s):  
Karolina Sobańska ◽  
Joanna Cerazy-Waliszewska ◽  
Monika Kowalska ◽  
Magdalena Rakoczy ◽  
Jan Podkowiński ◽  
...  
2008 ◽  
Vol 42 (6) ◽  
pp. 413-419 ◽  
Author(s):  
A. I. Yemets ◽  
V. V. Radchuk ◽  
A. V. Pakhomov ◽  
Ya. B. Blume

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric J. Raes ◽  
Kristen Karsh ◽  
Swan L. S. Sow ◽  
Martin Ostrowski ◽  
Mark V. Brown ◽  
...  

AbstractGlobal oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
Sudipta Acharya ◽  
Laizhong Cui ◽  
Yi Pan

Abstract Background In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. Results In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. Conclusion A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


Sign in / Sign up

Export Citation Format

Share Document