Pyrolysis characteristics, kinetics and evolved volatiles determination of rice-husk-based distiller's grains

2020 ◽  
Vol 135 ◽  
pp. 105525 ◽  
Author(s):  
Zhao Zhang ◽  
Qiuju Wang ◽  
Luwei Li ◽  
Guoren Xu
2021 ◽  
Author(s):  
Yaoxin LIU ◽  
Enyu Wang ◽  
Ze KAN

Abstract Under the pressure of environmental problems and fossil energy shortage, countries all over the world are looking for fuel to replace fossil energy. Oil shale and rice husk are potential fuels, but they both have some problems, such as high ash content and low calorific value .In the present study,oil shale and rice husk were used as feedstock for the high quality fuel through hydrothermal approach,it provides a new way for the resource utilization of oil shale and rice.Thermogravimetric method was used to analyze the functional groups change and thermal transformation characteristics of mixed hydrochars prepared for oil shale(OS) and rice husk(RH) at different hydrothermal temperatures(150,200 and 250℃), including combustion and pyrolysis processes, and analyze the synergistic effects. Results showed that the co-hydrocharsization pretreatment had a significant effect on the thermal transformation behavior of oil shale and rice husk.On the one hand, the mixture of hydrocar has higher volatile content than its calculated value.On the other hand,a synergistic effect(promoting combustion and pyrolysis behavior) was found in both combustion and pyrolysis processes, and this effect was the most obvious when the hydrothermal temperature was around 200℃,and the characteristic peak of functional groups vibration was strong.Since the synergistic effect of pyrolysis process is lower than that of combustion process, co-hydrocharsation products are considered to be more suitable for combustion.These findings have positive significance of energy generation and utilization of organic waste by the combination of co-hydrocharsization modification and subsequent thermochemical process.


2020 ◽  
Vol 20 (2) ◽  
pp. 184
Author(s):  
Nikdalila Radenahmad ◽  
Md Sumon Reza ◽  
Muhammad S. Abu Bakar ◽  
Abul K. Azad

Rice husk is biomass that can be utilized as fuel for biomass gasification as a renewable energy source. In this paper, thermochemical methods were used to determine the higher heating values, moisture content, bulk density, pellet density, microstructure, and elemental composition of Thai Rice Husk (Oryza Sativa Linn). The heating energy was analyzed using a bomb calorimeter, which showed a higher heating value of 15.46 MJ/kg. Determination of pellet density through rice husk powder pelletization exhibited a value of 1.028 g/cm3, while moisture content was 5.017 wt%. The heating value and moisture content revealed good agreement with the literature values, indicating the potentiality of rice hush for energy generation. Scanning electron microscopy (SEM) showed that the raw rice husk and its ash have similar porosity types but different bulk structure.  Elemental analysis using energy dispersive X-ray (EDX) indicated that rice husk contains O, Si, C while O and C percentages were drastically decreased during combustion. The obtained heating value and moisture content proved that rice husk could be used as a bio-energy source in biomass gasification for power generation.


2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Loth Botahala ◽  
Yanti Malailak ◽  
Herlin Silvia Maure ◽  
Hagar Karlani

The effectiveness of the absorption of activated rice husk and hazelnut shells on the purification of used cooking oil has been carried out. The aim is to determine the absorption capacity of the active charcoal of rice husk and hazelnut shells to purify used cooking oil. After being physically activated, activated charcoal from rice husk and pecan shells is applied to the purification of used cooking oil. The results show that the quality of hazelnut shell charcoal is better than rice husk after it is applied to purifying used cooking oil.


2019 ◽  
Vol 4 (2) ◽  
pp. 85
Author(s):  
Kharisma Resti Kurnia Diah Sangandita ◽  
Budi Utami

<p>This study aimed to utilize rice husk and bagasse fly ash as Cr metal adsorbent. In this study, the adsorption used batch system. The steps of research were preparation of materials, activation of materials with HCl and NaOH solutions, characterization test using SEM, FTIR and AAS. Determination of optimum condition of Cr metal adsorption on variation of adsorbent composition, adsorbent mass, adsorbate concentration and isotherm adsorption study. The result showed that the adsorbent of rice husk and bagasse fly ash can be used as adsorbent because there were pores that is based on SEM analysis, based on FTIR results that there were a –OH (hydroxyl) functional group at wavenumber 3424.76 cm<sup>-1</sup> and Si-O from Si-O-Si (siloxane) functional group at wavenumber 1048.36 cm<sup>-1</sup> in the combination of rice husk and bagasse fly ash adsorbent, based on AAS results it was found that the optimum composition ratio of rice husk and bagasse fly ash adsorbent was 1:2 with the percentage of Cr adsorbed 98.90%, the optimum adsorbent mass at 0.2 g with the percentage of Cr adsorbed 99.77% and the optimum adsorbate concentration at 20.645 mg/L with the percentage of Cr adsorbed 99.63%. The pattern of adsorption isotherm tends followed the Langmuir isotherm which means the adsorption process chemically.</p>


2017 ◽  
Vol 135 ◽  
pp. 226-238 ◽  
Author(s):  
Pedro José Sanches Filho ◽  
Lucas Aldrigui Silveira ◽  
Glauco Rasmussen Betemps ◽  
Gissele Oliveira Montenegro ◽  
Daniele Martin Sampaio ◽  
...  
Keyword(s):  

2013 ◽  
Vol 291-294 ◽  
pp. 351-354
Author(s):  
Qing Wang ◽  
Chun Xia Jia ◽  
Hong Peng Liu

The rice husk from China has been non-isothermally pyrolysed on thermogravimetric analyzer(TGA). The analyses were performed at different heating rates (20, 40, 60, 80, 100°C/min) up to 900°C with nitrogen as purge gas. The weight loss curve showed that the main pyrolysis of rice husk took place in the range of 200~500°C. On the basis of experiment data, a pyrolysis kinetic model was proposed. The kinetic parameters of activation energy(E) and frequency factor(A) were obtained by the Direct Arrhenius Plot Method. There was no clear relationship between activation energy and heating rate.


Sign in / Sign up

Export Citation Format

Share Document