scholarly journals Purine metabolite-based machine learning models for risk prediction, prognosis, and diagnosis of coronary artery disease

2021 ◽  
Vol 139 ◽  
pp. 111621
Author(s):  
Sunhee Jung ◽  
Eunyong Ahn ◽  
Sang Baek Koh ◽  
Sang-Hak Lee ◽  
Geum-Sook Hwang
2019 ◽  
Vol 39 (8) ◽  
pp. 1032-1044 ◽  
Author(s):  
Alind Gupta ◽  
Justin J. Slater ◽  
Devon Boyne ◽  
Nicholas Mitsakakis ◽  
Audrey Béliveau ◽  
...  

Objectives. Coronary artery disease (CAD) is the leading cause of death and disease burden worldwide, causing 1 in 7 deaths in the United States alone. Risk prediction models that can learn the complex causal relationships that give rise to CAD from data, instead of merely predicting the risk of disease, have the potential to improve transparency and efficacy of personalized CAD diagnosis and therapy selection for physicians, patients, and other decision makers. Methods. We use Bayesian networks (BNs) to model the risk of CAD using the Z-Alizadehsani data set—a published real-world observational data set of 303 Iranian patients at risk for CAD. We also describe how BNs can be used for incorporation of background knowledge, individual risk prediction, handling missing observations, and adaptive decision making under uncertainty. Results. BNs performed on par with machine-learning classifiers at predicting CAD and showed better probability calibration. They achieved a mean 10-fold area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.04, which was comparable with the performance of logistic regression with L1 or L2 regularization (AUC: 0.92 ± 0.06), support vector machine (AUC: 0.92 ± 0.06), and artificial neural network (AUC: 0.91 ± 0.05). We describe the use of BNs to predict with missing data and to adaptively calculate prognostic values of individual variables under uncertainty. Conclusion. BNs are powerful and versatile tools for risk prediction and health outcomes research that can complement traditional statistical techniques and are particularly useful in domains in which information is uncertain or incomplete and in which interpretability is important, such as medicine.


2018 ◽  
Vol 45 (5) ◽  
pp. 901-910 ◽  
Author(s):  
Shaik Mohammad Naushad ◽  
Tajamul Hussain ◽  
Bobbala Indumathi ◽  
Khatoon Samreen ◽  
Salman A. Alrokayan ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 551
Author(s):  
Chris Boyd ◽  
Greg Brown ◽  
Timothy Kleinig ◽  
Joseph Dawson ◽  
Mark D. McDonnell ◽  
...  

Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.


2021 ◽  
Vol 77 (18) ◽  
pp. 65
Author(s):  
Maryam Saleem ◽  
Naveena Yanamala ◽  
Irfan Zeb ◽  
Brijesh Patel ◽  
Heenaben Patel ◽  
...  

2006 ◽  
Vol 36 (4) ◽  
pp. 211-217 ◽  
Author(s):  
C. Falcone ◽  
P. Minoretti ◽  
A. D'Angelo ◽  
M. P. Buzzi ◽  
E. Coen ◽  
...  

Author(s):  
Nghia H Nguyen ◽  
Dominic Picetti ◽  
Parambir S Dulai ◽  
Vipul Jairath ◽  
William J Sandborn ◽  
...  

Abstract Background and Aims There is increasing interest in machine learning-based prediction models in inflammatory bowel diseases (IBD). We synthesized and critically appraised studies comparing machine learning vs. traditional statistical models, using routinely available clinical data for risk prediction in IBD. Methods Through a systematic review till January 1, 2021, we identified cohort studies that derived and/or validated machine learning models, based on routinely collected clinical data in patients with IBD, to predict the risk of harboring or developing adverse clinical outcomes, and reported its predictive performance against a traditional statistical model for the same outcome. We appraised the risk of bias in these studies using the Prediction model Risk of Bias ASsessment (PROBAST) tool. Results We included 13 studies on machine learning-based prediction models in IBD encompassing themes of predicting treatment response to biologics and thiopurines, predicting longitudinal disease activity and complications and outcomes in patients with acute severe ulcerative colitis. The most common machine learnings models used were tree-based algorithms, which are classification approaches achieved through supervised learning. Machine learning models outperformed traditional statistical models in risk prediction. However, most models were at high risk of bias, and only one was externally validated. Conclusions Machine learning-based prediction models based on routinely collected data generally perform better than traditional statistical models in risk prediction in IBD, though frequently have high risk of bias. Future studies examining these approaches are warranted, with special focus on external validation and clinical applicability.


Author(s):  
Chenxi Huang ◽  
Shu-Xia Li ◽  
César Caraballo ◽  
Frederick A. Masoudi ◽  
John S. Rumsfeld ◽  
...  

Background: New methods such as machine learning techniques have been increasingly used to enhance the performance of risk predictions for clinical decision-making. However, commonly reported performance metrics may not be sufficient to capture the advantages of these newly proposed models for their adoption by health care professionals to improve care. Machine learning models often improve risk estimation for certain subpopulations that may be missed by these metrics. Methods and Results: This article addresses the limitations of commonly reported metrics for performance comparison and proposes additional metrics. Our discussions cover metrics related to overall performance, discrimination, calibration, resolution, reclassification, and model implementation. Models for predicting acute kidney injury after percutaneous coronary intervention are used to illustrate the use of these metrics. Conclusions: We demonstrate that commonly reported metrics may not have sufficient sensitivity to identify improvement of machine learning models and propose the use of a comprehensive list of performance metrics for reporting and comparing clinical risk prediction models.


Sign in / Sign up

Export Citation Format

Share Document