scholarly journals Antiviral activity of Epimedium koreanum Nakai water extract against influenza viruses

2022 ◽  
Vol 146 ◽  
pp. 112581
Author(s):  
Won-Kyung Cho ◽  
Jin Yeul Ma
2013 ◽  
Vol 9 ◽  
pp. 197-203 ◽  
Author(s):  
Terry W Moore ◽  
Kasinath Sana ◽  
Dan Yan ◽  
Pahk Thepchatri ◽  
John M Ndungu ◽  
...  

High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC50 values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding (R)-isomers.


2013 ◽  
Vol 440 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Sehee Park ◽  
Jin Il Kim ◽  
Ilseob Lee ◽  
Sangmoo Lee ◽  
Min-Woong Hwang ◽  
...  

MedChemComm ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 2072-2082 ◽  
Author(s):  
Kseniya S. Kovaleva ◽  
Fedor I. Zubkov ◽  
Nikolay I. Bormotov ◽  
Roman A. Novikov ◽  
Pavel V. Dorovatovskii ◽  
...  

CamphorN-acylhydrazones showed promising antiviral activity towards vaccinia and influenza viruses.


2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Jun-Gyu Park ◽  
Ginés Ávila-Pérez ◽  
Aitor Nogales ◽  
Pilar Blanco-Lobo ◽  
Juan C. de la Torre ◽  
...  

ABSTRACT Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 μM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 μM to 0.55 μM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 μM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections. IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71534 ◽  
Author(s):  
Mieko Muramatsu ◽  
Reiko Yoshida ◽  
Hiroko Miyamoto ◽  
Daisuke Tomabechi ◽  
Masahiro Kajihara ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 19-25
Author(s):  
Yoshihiro Yoshida ◽  
Mayu Tsukamoto ◽  
Ken-ichi Muraoka ◽  
Satoshi Yoshida ◽  
Kimiyasu Shiraki

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1350
Author(s):  
Seong-Ryeol Kim ◽  
Myeong-Seon Jeong ◽  
Seo-Hyeon Mun ◽  
Jaewon Cho ◽  
Min-Duk Seo ◽  
...  

Influenza viruses cause respiratory infections in humans and animals, which have high morbidity and mortality rates. Although several drugs that inhibit viral neuraminidase are used to treat influenza infections, the emergence of resistant viruses necessitates the urgent development of new antiviral drugs. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that exhibits antiviral activity against enterovirus 71 (EV71) by inhibiting viral 3C protease activity. In this study, we evaluated the antiviral activity of chrysin against influenza A/Puerto Rico/8/34 (A/PR/8). Chrysin significantly inhibited A/PR/8-mediated cell death and the replication of A/PR/8 at concentrations up to 2 mM. Viral hemagglutinin expression was also markedly decreased by the chrysin treatment in A/PR/8-infected cells. Through the time course experiment and time-of-addition assay, we found that chrysin inhibited viral infection at the early stages of the replication cycle. Additionally, the nucleoprotein expression of A/PR/8 in A549 cells was reduced upon treatment with chrysin. Regarding the mechanism of action, we found that chrysin inhibited autophagy activation by increasing the phosphorylation of mammalian target of rapamycin (mTOR). We also confirmed a decrease in LC3B expression and LC3-positive puncta levels in A/PR/8-infected cells. These results suggest that chrysin exhibits antiviral activity by activating mTOR and inhibiting autophagy to inhibit the replication of A/PR/8 in the early stages of infection.


Sign in / Sign up

Export Citation Format

Share Document