scholarly journals Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Jun-Gyu Park ◽  
Ginés Ávila-Pérez ◽  
Aitor Nogales ◽  
Pilar Blanco-Lobo ◽  
Juan C. de la Torre ◽  
...  

ABSTRACT Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 μM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 μM to 0.55 μM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 μM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections. IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.

Author(s):  
Bahar Öztelcan Gündüz ◽  
Erman Ataş ◽  
Bülent Ünay ◽  
Halit Halil

Abstract Objective Influenza viruses are among the most common respiratory pathogens for all age groups, and may cause seasonal outbreaks. The aim of our study was to describe the clinical characteristics of influenza cases in the 2019–2020 flu season and to study the risk factors for hospital admission and complications. Methods This was a retrospective study in 251 children (group 1: nonhospitalized; group 2: hospitalized) with influenza in the 2019–2020 flu season. Data on demographic features, influenza type, complaints, complications, and hospitalization length were collected and recorded. Results Influenza A was detected in 199 (79.3%) patients, and influenza B was detected in 52 (20.7%); 43.4% of patients were girls and 56.6% were boys. The mean age of the patients was 3.91 ± 3.3 years (16 days to 18 years). A total of 52 (20.7%) patients were hospitalized. The age of the patients in group 2 was lower than that in group 1 (3.1 vs. 4.2 years, p = 0.03). Group 2 patients were more likely to have creatine kinase (CK) elevation, febrile seizures, and physical examination abnormalities. Group 2 patients were also more likely to have influenza A. Patients with febrile seizures, chronic diseases, abnormal physical examination findings, developed complications, and additional drug use apart from oseltamivir in the treatment were also more likely to require hospitalization. Conclusion Infants and children with chronic diseases, history of febrile seizures, complications, and the use of drugs other than antiviral drugs should be carefully evaluated in case they need hospitalization. Increasing vaccination rates, initiation of antiviral treatment for selected patients, and close monitoring of patients in risk groups can decrease morbidity and mortality. Myalgias are a common complaint in patients with acute influenza infection. Previous studies suggest CK measurement be part of the work-up for the hospitalized patient with acute influenza infection.


2021 ◽  
Vol 14 (7) ◽  
pp. 650
Author(s):  
Yejin Jang ◽  
Jinhe Han ◽  
Xiaoli Li ◽  
Hyunjin Shin ◽  
Won-Jea Cho ◽  
...  

Influenza viruses are one of the major causative agents for human respiratory infections. Currently, vaccines and antivirals approved for preventing and treating viral infections are available. However, limited protection efficacy and frequent emergence of drug-resistant viruses stand for a need for the development of antivirals with different chemical skeletons from existing drugs. Screening of a chemical library identified an isoquinolone compound (1) as a hit with 50% effective concentrations (EC50s) between 0.2 and 0.6 µM against the influenza A and B viruses. However, it exhibited severe cytotoxic effects with a 50% cytotoxic concentration (CC50) of 39.0 µM in canine kidney epithelial cells. To address this cytotoxic issue, we synthesized an additional 22 chemical derivatives. Through structure-activity, as well as structure-cytotoxicity relationship studies, we discovered compound 21 that has higher EC50 values ranging from 9.9 to 18.5 µM, but greatly alleviated cytotoxicity with a CC50 value over 300 µM. Mode-of-action and cell type-dependent antiviral experiments indicated that it targets viral polymerase activity and functions also in human cells. Here, we present a new class of viral polymerase inhibitors with a core skeleton of isoquinolone, of which antiviral activity could be better improved through following design and synthesis of its derivatives for drug development.


Author(s):  
M.E. Ignat’eva ◽  
I.Yu. Samoilova ◽  
L.V. Budatsyrenova ◽  
T.V. Korita ◽  
O.E. Trotsenko

We analyzed the epidemiological situations on influenza and acute respiratory viral infections during the 2015–2016, 2016–2017 and 2017–2018 epidemic seasons in the Republic of Sakha (Yakutia). The 2015–2016 and 2016–2017 epidemic seasons differed from the previous ones by a rather high intensity of the epidemic process, moderate duration of the epidemic awareness with a two-wave pattern of the course, high morbidity of the population at the epidemic peak and the absence of the disease’s severe forms in those vaccinated against influenza. During the 2015–2016 epidemic season, the influenza A (H1N1) virus was the dominant pathogen in Yakutia. During the 2016–2017 epidemic season, the first morbidity awareness was caused by the influenza A (H3N2) virus, the second morbidity awareness was caused by the influenza B virus. In contrast to previous two seasons the 2017–2018 epidemic season is characterized by lower intensity, a significant morbidity decrease of influenza and acute respiratory viral infections in different age groups of the population and a low level of influenza viruses' circulation. Influenza A (H3N2) virus dominated and joined influenza B virus circulation was registered subsequently during the 2017–2018 epidemic season.


2020 ◽  
Vol 65 (7-8) ◽  
pp. 8-17
Author(s):  
Ya. L. Esaulkova ◽  
A. A. Muryleva ◽  
E. O. Sinegubova ◽  
S. V. Belyaevskaya ◽  
A. V. Garshinina ◽  
...  

Influenza and ARVIs are the most common forms of infectious respiratory diseases in humans. In this regard, the search and development of means for the prevention and treatment of viral infections is a high priority task. The aim of this study was to assess the mechanisms of the antiviral activity of sage-leaved rock-rose extract (Cistus salviifolius) against the causative agents of influenza and ARVIs in humans. In the course of the study, it was shown that C.salviifolius extract inhibits reproduction of influenza viruses A(H1N1), A (H1N1)pdm09, A(H3N2), A(H5N2), A(H7N9) and influenza B virus. The extract showed maximum virus-inhibiting activity at the early stages of the viral cycle (0–2 hours after infection). C.salviifolius extract significantly reduced the hemagglutinating activity of the virus, and at the same time did not affect the fusogenic properties of viral hemagglutinin. Transmission electron microscopy was used to demonstrate that the cistus extract prevents the absorption of influenza virions on the surface of cells in culture. The inhibitory activity of the extract against other human respiratory viruses, parainfluenza virus and adenovirus, was also shown. The protective activity of C.salviifolius extract was demonstrated when applied intranasally during the experiments on a model of influenza pneumonia in mice. The degree of this activity was in inverse proportion to the time window between the application of the extract and the infection of the animals. The virus, pre-incubated with C.salviifolius extract, did not cause death in the animals. The data obtained indicate that C.salviifolius extract serves as an effective and broad-range means of preventing respiratory viral infections in humans.


2019 ◽  
Vol 31 (4) ◽  
pp. 1057-1061
Author(s):  
Zivadinka Cvetanovska ◽  
Vaso Taleski

Influenza is one of the commonest acute viral respiratory infections with a great potential for spreading as an epidemic or pandemic appearance. Until 2009 relevant data about types and subtypes of influenza viruses circulated in Republic of Macedonia, did not exist. Since pandemic in 2009, molecular method RT-PCR was introduced real time detection of types and subtypes of influenza viruses, which enabled continuously and accurate follow up. Flu differ in types and subtypes presence in each new season, with great influence on number of patients and deaths caused by influenza viral infections. In season 2009/2010 - type Influenza A dominated, subtype A (H1N1) pdm. Total number of 54.343 cases were registered and 30 deaths. In season 2010/2011 – co-circulated types of Influenza A and Influenza B, with small domination of subtype A (H1N1) pdm. Total number of 27.635 cases were registered and 17 deaths. In season 2011/2012 - dominant was type Influenza A, subtype A (H3N2). Total number of 9.732 cases were registered and only one case of death. In season 2012/2013 - co-circulated types of Influenza A and Influenza B, with domination of subtype A (H1N1) pdm. Total number of 24.524 were registered, no deaths. In season 2013/2014 - co-circulated types of Influenza A and Influenza B, with domination of subtype A (H3N2). Total number of 29.074 were registered and 12 deaths. In season 2014/2015 - dominant was type Influenza B, and also Influenza A subtype A(H3N2) circulated. Total number of reported cases was 33.228, no deaths. In season 2015/2016 - Influenza A, subtype A(H1N1) pdm was dominant. During same period, type Influenza B, subtype Victoria was detected as well. Total number of reported cases was 29.094 and 2 deaths. In season 2016/2017 - type Influenza A, subtype A/H3, was dominant. Total number of reported cases was 35.079 and 2 deaths. In season 2017/2018 година – simultaneously circulation of types Influenza А and Influenza B, with domination of lineage B/Yamagata. Total number of 23.954 cases were registered, no deaths. In season 2018/2019 - highest number of cases were caused by type Influenza A subtype A(H1) pdm, in co-circulation with Influenza А(H3). Total number of reported cases was 21.404 and 29 deaths, that present the highest number of deaths in correlation with number of diseased.


2016 ◽  
Vol 60 (9) ◽  
pp. 5504-5514 ◽  
Author(s):  
Jeremy C. Jones ◽  
Bindumadhav M. Marathe ◽  
Christian Lerner ◽  
Lukas Kreis ◽  
Rodolfo Gasser ◽  
...  

ABSTRACTAntiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiplein vitroassays, supporting its further characterization and development as a potential antiviral agent for treating influenza.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1041
Author(s):  
Desarey Morales Vasquez ◽  
Jun-Gyu Park ◽  
Ginés Ávila-Pérez ◽  
Aitor Nogales ◽  
Juan Carlos de la Torre ◽  
...  

Zika virus (ZIKV) was identified in 1947 in the Zika forest of Uganda and it has emerged recently as a global health threat, with recurring outbreaks and its associations with congenital microcephaly through maternal fetal transmission and Guillain-Barré syndrome. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or antivirals to treat ZIKV infections, which underscores an urgent medical need for the development of disease intervention strategies to treat ZIKV infection and associated disease. Drug repurposing offers various advantages over developing an entirely new drug by significantly reducing the timeline and resources required to advance a candidate antiviral into the clinic. Screening the ReFRAME library, we identified ten compounds with antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV). Moreover, we showed the ability of these ten compounds to inhibit influenza A and B virus infections, supporting their broad-spectrum antiviral activity. In this study, we further evaluated the broad-spectrum antiviral activity of the ten identified compounds by testing their activity against ZIKV. Among the ten compounds, Azaribine (SI-MTT = 146.29), AVN-944 (SI-MTT = 278.16), and Brequinar (SI-MTT = 157.42) showed potent anti-ZIKV activity in post-treatment therapeutic conditions. We also observed potent anti-ZIKV activity for Mycophenolate mofetil (SI-MTT = 20.51), Mycophenolic acid (SI-MTT = 36.33), and AVN-944 (SI-MTT = 24.51) in pre-treatment prophylactic conditions and potent co-treatment inhibitory activity for Obatoclax (SI-MTT = 60.58), Azaribine (SI-MTT = 91.51), and Mycophenolate mofetil (SI-MTT = 73.26) in co-treatment conditions. Importantly, the inhibitory effect of these compounds was strain independent, as they similarly inhibited ZIKV strains from both African and Asian/American lineages. Our results support the broad-spectrum antiviral activity of these ten compounds and suggest their use for the development of antiviral treatment options of ZIKV infection.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Jeong-Joong Yoon ◽  
Mart Toots ◽  
Sujin Lee ◽  
Myung-Eun Lee ◽  
Barbara Ludeke ◽  
...  

ABSTRACT Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5′-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.


2020 ◽  
Vol 97 (2) ◽  
pp. 140-149
Author(s):  
Aleksandr V. Alimov ◽  
Svetlana S. Smirnova ◽  
Evgenia V. Lelenkova ◽  
Aleksandr Yu. Markaryan ◽  
Ivan V. Vyalykh ◽  
...  

Objective. To study the role of influenza viruses in the development of severe acute respiratory infections (SARI) in patients admitted to Yekaterinburg hospitals during 2017-2018 epidemic season.Materials and Methods. A retrospective epidemiological analysis of influenza incidence in Yekaterinburg was conducted, 403 influenza and acute respiratory viral infections case sheets were studied, and PCR analysis of clinical samples from the patients for respiratory viral infections was performed.Results. During the epidemic period a total 27.0% of the Yekaterinburg population were reported with influenza and other SARI, with 1.8% patients hospitalized. 5.6% of the total number of patients admitted with influenza and SARI in Yekaterinburg hospitals were included in the study. The rate of the detection of influenza A and B viruses RNA in the clinical samples from the patients with SARI was 28.3%. The rates of the detection in PCR of influenza B/Yamagata, A(H1N1)pdm09 and A(H3N2) were 46.5, 20.2 and 10.5%, respectively.Conclusion. The study results indicated that influenza viruses remain significant pathogens of respiratory infections that required hospitalization. Among patients with SARI the highest incidence was observed in children of a younger age group and was mainly associated with influenza B virus of Yamagata lineage and influenza A virus (H1N1)pdm09. According to the results of a molecular genetic study, influenza A (H1N1) pdm09 viruses belonged to clade 6B.1, carried characteristic amino acid substitutions in hemagglutinin S84N, S162N (with the acquisition of a potential glycosylation site) and I216T and were similar to the A/Michigan/45/2015 vaccine strain. The influenza B viruses studied belonged to the Yamagata lineage, clade 3. The influenza B/Ekaterinburg /RII-4723S/2018 virus differed from the reference strain B/Phuket/3073/2013 by two amino acid substitutions in the hemagglutinin gene M251V and L172Q.


Author(s):  
Emily S. Bailey ◽  
Xinye Wang ◽  
Mai-juan Ma ◽  
Guo-lin Wang ◽  
Gregory C. Gray

AbstractInfluenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.


Sign in / Sign up

Export Citation Format

Share Document