scholarly journals Asymmetric synthesis of host-directed inhibitors of myxoviruses

2013 ◽  
Vol 9 ◽  
pp. 197-203 ◽  
Author(s):  
Terry W Moore ◽  
Kasinath Sana ◽  
Dan Yan ◽  
Pahk Thepchatri ◽  
John M Ndungu ◽  
...  

High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC50 values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding (R)-isomers.

2017 ◽  
Vol 23 (2) ◽  
pp. 154-163 ◽  
Author(s):  
Mariko Yoneyama-Hirozane ◽  
Kohei Deguchi ◽  
Takeshi Hirakawa ◽  
Tsuyoshi Ishii ◽  
Tomoyuki Odani ◽  
...  

Ghrelin O-acyl transferase (GOAT; MBOAT4) catalyzes O-acylation at serine-3 of des-acyl ghrelin. Acyl ghrelin is secreted by stomach X/A-like cells and plays a role in appetite and metabolism. Therefore, GOAT has been expected to be a novel antiobesity target because it is responsible for acyl ghrelin production. Here, we report homogeneous time-resolved fluorescence (HTRF) and enzyme-linked immunosorbent assay (ELISA) methods utilizing human GOAT-expressing microsomes as a novel high-throughput assay system for the discovery of hit compounds and optimization of lead compounds. Hit compounds exemplified by compound A (2-[(2,4-dichlorobenzyl)sulfanyl]-1,3-benzoxazole-5-carboxylic acid) were identified by high-throughput screening using the HTRF assay and confirmed to have GOAT inhibitory activity using the ELISA. Based on the hit compound information, the novel lead compound (compound B, (4-chloro-6-{[2-methyl-6-(trifluoromethyl)pyridin-3-yl]methoxy}-1-benzothiophen-3-yl)acetic acid) was synthesized and exhibited potent GOAT inhibition with oral bioavailability. Both the hit compound and lead compound showed octanoyl-CoA competitive inhibitory activity. Moreover, these two compounds decreased acyl ghrelin production in the stomach of mice after their oral administration. These novel findings demonstrate that GOAT is a druggable target, and its inhibitors are promising antiobesity drugs.


2005 ◽  
Vol 10 (5) ◽  
pp. 419-426 ◽  
Author(s):  
Tudor I. Oprea ◽  
Cristian G. Bologa ◽  
Bruce S. Edwards ◽  
Eric R. Prossnitz ◽  
Larry A. Sklar

An empirical scheme to evaluate and prioritize screening hits from high-throughput screening (HTS) is proposed. Negative scores are given when chemotypes found in the HTS hits are present in annotated databases such as MDDR and WOMBAT or for testing positive in toxicity-related experiments reported in TOXNET. Positive scores were given for higher measured biological activities, for testing negative in toxicity-related literature, and for good overlap when profiled against drug-related properties. Particular emphasis is placed on estimating aqueous solubility to prioritize in vivo experiments. This empirical scheme is given as an illustration to assist the decision-making process in selecting chemotypes and individual compounds for further experimentation, when confronted with multiple hits from high-throughput experiments. The decision-making process is discussed for a set of G-protein coupled receptor antagonists and validated on a literature example for dihydrofolate reductase inhibition.


2011 ◽  
Vol 90 (2) ◽  
pp. A33-A34
Author(s):  
Dirk Jochmans ◽  
Bernadette G. van den Hoogen ◽  
Pieter Leyssen ◽  
Ron A. Fouchier ◽  
Johan Neyts

ChemInform ◽  
2006 ◽  
Vol 37 (44) ◽  
Author(s):  
Valerie Charbonneau ◽  
William W. Ogilvie

2010 ◽  
Vol 16 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Joseph A. Maddry ◽  
Xi Chen ◽  
Colleen B. Jonsson ◽  
Subramaniam Ananthan ◽  
Judith Hobrath ◽  
...  

A highly reproducible and robust cell-based high-throughput screening (HTS) assay was adapted for screening of small molecules for antiviral activity against influenza virus strain A/Vietnam/1203/2004 (H5N1). The NIH Molecular Libraries Small Molecule Repository (MLSMR) Molecular Libraries Screening Centers Network (MLSCN) 100,000-compound library was screened at 50 µM. The “hit” rate (>25% inhibition of the viral cytopathic effect) from the single-dose screen was 0.32%. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen yielded 5 active compounds (SI value >3). One compound showed an SI50 value of greater than 3, 3 compounds had SI values ranging from greater than 14 to 34, and the most active compound displayed an SI value of 94. The active compounds represent 2 different classes of molecules, benzoquinazolinones and thiazoloimidazoles, which have not been previously identified as having antiviral/anti-influenza activity. These molecules were also effective against influenza A/California/04/2009 virus (H1N1) and other H1N1 and H5N1 virus strains in vitro but not H3N2 strains. Real-time qRT-PCR results reveal that these chemotypes significantly reduced M1 RNA levels as compared to the no-drug influenza-infected Madin Darby canine kidney cells.


2009 ◽  
Vol 54 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Boris Nowotny ◽  
Thomas Schneider ◽  
Gabriele Pradel ◽  
Tanja Schirmeister ◽  
Axel Rethwilm ◽  
...  

ABSTRACT Inhibition of the interaction of the human cytidine-deaminase APOBEC3G (A3G) with the human immunodeficiency virus (HIV) type 1-specific viral infectivity factor (Vif) represents a novel therapeutic approach in which a cellular factor with potent antiviral activity (A3G) plays a key role. In HIV-infected cells, the interaction of Vif with A3G leads to the subsequent degradation of A3G by the 26S proteasome via the ubiquitin pathway and to the loss of antiviral activity. To establish a stable and convenient cellular testing platform for the high-throughput screening of potential antiviral compound libraries, we engineered a double transgenic cell line constitutively expressing an enhanced yellow fluorescent protein expressor (EYFP-A3G) fusion as well as a Tet-Off controllable Vif protein. With this cell line, we were able to measure precisely the Vif-induced degradation of A3G in the presence of potential antiviral compounds in an easy-to-handle, robust, and practical high-throughput multiwell plate format with an excellent screening window coefficient (Z factor) of 0.67.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 442 ◽  
Author(s):  
Anna Glanz ◽  
Karan Chawla ◽  
Stephanie Fabry ◽  
Gayatri Subramanian ◽  
Julie Garcia ◽  
...  

Interferon (IFN) regulatory factor 3 (IRF3) is the key transcription factor for the induction of IFN and antiviral genes. The absence of antiviral genes in IRF3 deficiency leads to susceptibility to a wide range of viral infections. Previously, we uncovered a function for nontranscriptional IRF3 (nt-IRF3), RLR (RIG-I-like receptor)-induced IRF3-mediated pathway of apoptosis (RIPA), which triggers apoptotic killing of virus-infected cells. Using knock-in mice expressing a transcriptionally inactive, but RIPA-active, IRF3 mutant, we demonstrated the relative contribution of RIPA to host antiviral defense. Given that RIPA is a cellular antiviral pathway, we hypothesized that small molecules that promote RIPA in virus-infected cells would act as antiviral agents. To test this, we conducted a high throughput screen of a library of FDA-approved drugs to identify novel RIPA activators. Our screen identified doxorubicin as a potent RIPA-activating agent. In support of our hypothesis, doxorubicin inhibited the replication of vesicular stomatitis virus, a model rhabdovirus, and its antiviral activity depended on its ability to activate IRF3 in RIPA. Surprisingly, doxorubicin inhibited the transcriptional activity of IRF3. The antiviral activity of doxorubicin was expanded to flavivirus and herpesvirus that also activate IRF3. Mechanistically, doxorubicin promoted RIPA by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Finally, we validated these results using another RIPA-activating compound, pyrvinium pamoate, which showed a similar antiviral effect without affecting the transcriptional activity of IRF3. Therefore, we demonstrate that the RIPA branch of IRF3 can be targeted therapeutically to prevent virus infection.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 171-171
Author(s):  
Michael C. Wei ◽  
Christina J. Matheny ◽  
Michael C. Bassik ◽  
Alicia J. Donnelly ◽  
Martin Kampmann ◽  
...  

Abstract There is a critical need for new agents with novel therapeutic targets and improved safety profiles in high-risk acute lymphoblastic leukemia (ALL), which is a significant cause of morbidity and mortality in pediatric and adult populations. Phenotypic high-throughput chemical screens allow for discovery of small molecules that modulate complex phenotypes and provide lead compounds for novel therapies; however, identification of their mechanistically relevant targets remains a major experimental challenge. We applied a chemical genetics approach involving sequential unbiased high-throughput chemical and ultra-complex, genome-scale shRNA screens to address this challenge and identify novel agents in ALL. A cell-based phenotypic high-throughput chemical screen of 115,000 compounds identified 640 compounds that inhibited growth of one or both ALL cell lines with high-risk Mixed Lineage Leukemia (MLL) genetic abnormalities, but did not inhibit the growth of a cell line lacking MLL rearrangement. The most potent and selective 64 were tested on an expanded panel of eight human B-ALL cell lines to identify lead compound STF-118804. STF-118804 inhibited the growth of most B-ALL cell lines with high potency demonstrating IC50 values in the low nanomolar range. Leukemic samples from five pediatric ALL patients were also sensitive to STF-118804 in the low nanomolar range. STF-118804 displayed 5–10 fold more potency against most leukemias in comparison to cycling human (lineage-negative cord blood) and murine (c-kit+ bone marrow) progenitor cells, demonstrating a therapeutic index. STF-118804 displays distinctive cytotoxicity by inducing apoptosis without causing a phase-specific cell cycle arrest. To discover the molecular target of STF-118804, a functional genomic screen was performed to identify shRNAs that conferred sensitivity or resistance to STF-118804, utilizing an ultra-complex (∼25 shRNAs per gene) library targeting in total ∼9300 human genes and 1000s of negative control shRNAs. NAMPT was the most statistically significant gene to confer sensitivity to STF-118804, suggesting that STF-118804 functioned as a NAMPT inhibitor. NAMPT encodes nicotinamide phosphoribosyl transferase, a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a crucial cofactor in many biochemical processes. STF-118804 was confirmed as a novel class of NAMPT inhibitor through metabolic rescue, enzymatic, and genetic studies. STF-118804 displayed strong inhibitory activity in in vitro NAMPT enzymatic assays. Over-expression of wild-type or mutant NAMPT in cells indicated that STF-118804 cytotoxicity is a result of its ability to inhibit NAMPT, and that STF-118804 does not have significant off-target effects on cell viability. The potential efficacy of STF-118804 in vivo was assessed in an orthotopic xenograft model of ALL. Sublethally irradiated immunodeficient mice were transplanted with human ALL cells engineered to constitutively express firefly luciferase. Dosing of STF-118804 was initiated two weeks post-transplant when ALL cells had engrafted and bioluminescent signal was detectable. Mice treated with STF-118804 showed regression of leukemia by bioimaging and significantly extended survival. The leukemia initiating cell (LIC) frequency in STF-118804 treated mice was significantly lower (∼8 fold) than vehicle treated mice, showing that STF-118804 was effective in reducing LICs. In summary, tandem high-throughput screening identified a highly-specific, potent, and structurally novel small molecule inhibitor of NAMPT that is active in ALL. Tandem high throughput screening using chemical and ultra-complex shRNA libraries provides a rapid chemical genetics approach for seamless progression from small molecule lead identification to target discovery and validation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document