scholarly journals β-Arrestin2 Regulates Cannabinoid CB1 Receptor Signaling and Adaptation in a Central Nervous System Region–Dependent Manner

2012 ◽  
Vol 71 (8) ◽  
pp. 714-724 ◽  
Author(s):  
Peter T. Nguyen ◽  
Cullen L. Schmid ◽  
Kirsten M. Raehal ◽  
Dana E. Selley ◽  
Laura M. Bohn ◽  
...  
2014 ◽  
Vol 50 (3) ◽  
pp. 797-810 ◽  
Author(s):  
Fatemeh Hemmati ◽  
Rasoul Ghasemi ◽  
Norlinah Mohamed Ibrahim ◽  
Leila Dargahi ◽  
Zahurin Mohamed ◽  
...  

2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 330 ◽  
Author(s):  
Paula Sanchis ◽  
Olaya Fernández-Gayol ◽  
Gemma Comes ◽  
Anna Escrig ◽  
Mercedes Giralt ◽  
...  

Background: Interleukin-6 (IL-6) is a pleiotropic and multifunctional cytokine that plays a critical role in induction of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Although EAE has always been considered a peripherally elicited disease, Il6 expression exclusively within central nervous system is sufficient to induce EAE development. Neurons, astrocytes, and microglia can secrete and respond to IL-6. Methods: To dissect the relevance of each cell source for establishing EAE, we generated and immunized conditional Il6 knockout mice for each of these cell types with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide dissolved in complete Freund’s adjuvant (CFA) and supplemented with Mycobacterium tuberculosis. Results and conclusions: The combined results reveal a minor role for Il6 expression in both astrocytes and microglia for symptomatology and neuropathology of EAE, whereas neuronal Il6 expression was not relevant for the variables analyzed.


2018 ◽  
Vol 119 (5) ◽  
pp. 1693-1698
Author(s):  
Jay Spampanato ◽  
Anne Gibson ◽  
F. Edward Dudek

Macrocyclic lactones (MLs) are commonly used treatments for parasitic worm and insect infections in humans, livestock, and companion animals. MLs target the invertebrate glutamate-activated chloride channel that is not present in vertebrates. MLs are not entirely inert in vertebrates, though; they have been reported to have activity in heterologous expression systems consisting of ligand-gated ion channels that are present in the mammalian central nervous system (CNS). However, these compounds are typically not able to reach significant concentrations in the CNS because of the activity of the blood-brain barrier P-glycoprotein extrusion system. Despite this, these compounds are able to reach low levels in the CNS that may be useful in the design of novel “designer” ligand-receptor systems that can be used to directly investigate neuronal control of behavior in mammals and have potential for use in treating human neurological diseases. To determine whether MLs might affect neurons in intact brains, we investigated the activity of the ML moxidectin (MOX) at native GABA receptors. Specifically, we recorded tonic and phasic miniature inhibitory postsynaptic currents (mIPSCs) in ex vivo brain slices. Our data show that MOX potentiated tonic GABA currents in a dose-dependent manner but had no concomitant effects on phasic GABA currents (i.e., MOX had no effect on the amplitude, frequency, or decay kinetics of mIPSCs). These studies indicate that behavioral experiments that implement a ML-based novel ligand-receptor system should take care to control for potential effects of the ML on native tonic GABA receptors.NEW & NOTEWORTHY We have identified a novel mechanism of action in the mammalian central nervous system for the antihelminthic moxidectin, commonly prescribed to animals worldwide and currently being evaluated for use in humans. Specifically, moxidectin applied to rodent brain slices selectively enhanced the tonic GABA conductance of hippocampal pyramidal neurons.


1999 ◽  
Vol 90 (6) ◽  
pp. 1704-1713. ◽  
Author(s):  
Yoshinori Kamiya ◽  
Tomio Andoh ◽  
Ryosuke Furuya ◽  
Satoshi Hattori ◽  
Itaru Watanabe ◽  
...  

Background Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system. Although barbiturates have been shown to suppress the AMPA receptor-mediated responses, it is unclear whether this effect contributes to the anesthetic action of barbiturates. The authors compared the effects of depressant [R(-)] and convulsant [S(+)] stereoisomers of 1-methyl-5-phenyl-5-propyl barbituric acid (MPPB) on the AMPA and gamma-aminobutyric acid type A (GABA(A)) receptor-mediated currents to determine if the inhibitory effects on AMPA receptors correlate to the in vivo effects of the isomers. Method The authors measured whole-cell currents in the rat cultured cortical neuron at holding potential of -60 mV. Kainate 500 microM was applied as the agonist for AMPA receptors. Thiopental (3-300 microM), R(-)-MPPB or S(+)-MPPB (100-1,000 microM) was coapplied with kainate under the condition in which the GABA(A) receptor-mediated current was blocked. Effects of MPPB isomers on the current elicited by GABA 1 microM were studied in the separate experiments. Results Thiopental inhibited the kainate-induced current reversibly and in a dose-dependent manner, with a concentration for 50% inhibition of 49.3 microM. Both R(-)-MPPB and S(+)-MPPB inhibited the kainate-induced current with a little stereoselectivity. R(-)-MPPB was slightly but significantly more potent than S(+)-MPPB. In contrast, R(-)-MPPB enhanced but S(+)-MPPB reduced the GABA-induced current. Conclusions Both convulsant and depressant stereoisomers of the barbiturate inhibited the AMPA receptor-mediated current despite of their opposite effects on the central nervous system in vivo. Although thiopental exhibited a considerable inhibition of AMPA receptors, the results suggest that the inhibition of AMPA receptors contributes little to the hypnotic action of the barbiturates.


Obesity ◽  
2006 ◽  
Vol 14 ◽  
pp. 208S-212S ◽  
Author(s):  
Rebecca L. Leshan ◽  
Marie Björnholm ◽  
Heike Münzberg ◽  
Martin G. Myers

Sign in / Sign up

Export Citation Format

Share Document