scholarly journals A Sphingosine-1-Phosphate Receptor 1-Directed Agonist Reduces Central Nervous System Inflammation in a Plasmacytoid Dendritic Cell-Dependent Manner

2012 ◽  
Vol 189 (7) ◽  
pp. 3700-3706 ◽  
Author(s):  
Georgina Galicia-Rosas ◽  
Natalia Pikor ◽  
Jordan A. Schwartz ◽  
Olga Rojas ◽  
Allen Jian ◽  
...  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Nil Albiol ◽  
Silvana Novelli ◽  
Anna Mozos ◽  
Marta Pratcorona ◽  
Rodrigo Martino ◽  
...  

Abstract Background We describe a patient with blastic plasmacytoid dendritic cell neoplasm with central nervous system involvement and the outcome of venetoclax use in this setting. Case presentation A 54-year-old Caucasian male was referred to the Haematology Unit with an enlarged inguinal lymph node which was diagnostic of a blastic plasmacytoid dendritic cell neoplasm. The staging revealed disseminated disease (skin, visceral, lymph nodes, and bone marrow). He received chemotherapy with an acute myeloid leukaemia-like regime. Afterwards, he underwent allogeneic haematopoietic stem cell transplantation, though it was not successful, showing a relapse 14 months later with hepatic and central nervous system dissemination. Intrathecal chemotherapy was administered, and venetoclax (anti-bcl2 agent) was started in an off-label indication based on most recent literature. The disease halted its course for 3 months. In the end, the patient’s disease progressed and so he succumbed due to infectious complications. Conclusions Venetoclax monotherapy seems not enough to control the disease progression under CNS involvement and other treatments should be investigated.


Blood ◽  
2021 ◽  
Author(s):  
Naveen Pemmaraju ◽  
Nathaniel R Wilson ◽  
Joseph D. Khoury ◽  
Nitin Jain ◽  
Naval G. Daver ◽  
...  

Author(s):  
Oren Levy ◽  
Veit Rothhammer ◽  
Ivan Mascanfroni ◽  
Zhixiang Tong ◽  
Rui Kuai ◽  
...  

2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


Sign in / Sign up

Export Citation Format

Share Document