S85. Individual Functional Abnormalities in the Default-Mode Network Predict Symptom Severity in Bipolar Disorder

2019 ◽  
Vol 85 (10) ◽  
pp. S330
Author(s):  
Gaelle Doucet ◽  
Delfina Janiri ◽  
David Glahn ◽  
Sophia Frangou
Author(s):  
Marco Marino ◽  
Zaira Romeo ◽  
Alessandro Angrilli ◽  
Ilaria Semenzato ◽  
Angela Favaro ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles A. Ellis ◽  
Zhijia Liang ◽  
Zening Fu ◽  
...  

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized.Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects.Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


2021 ◽  
Author(s):  
Lei Zhao ◽  
Qijing Bo ◽  
Zhifang Zhang ◽  
Feng Li ◽  
Yuan Zhou ◽  
...  

Abstract Background: No consistent evidence on the specific brain regions is available in the default mode network (DMN), which show abnormal spontaneous activity in bipolar disorder (BD). We aim to identify this region that is particularly impaired in patients with BD by using several different indices measuring spontaneous brain activity and then investigate its functional connectivity (FC).Methods: A total of 56 patients with BD and 71 healthy controls (HC) underwent resting-state functional magnetic resonance imaging. Three commonly used functional indices were used to identify the brain region showing abnormal spontaneous brain activity in BD. Then, this region served as the seed region for resting-state FC analysis to identify its functional networks altered in BD.Results: The BD group exhibited decreased fALFF, ReHo, and DC values in the left precuneus. The BD group had decreased rsFC within the DMN, indicated by decreased resting-state FC within the left precuneus and between the left precuneus and the medial prefrontal cortex. The BD group had decreased negative connectivity between the left precuneus and the left putamen, extending to the left insula.Conclusions: The findings provide convergent evidence for the abnormalities in the DMN of BD, particularly located in the left precuneus. Decreased FC within the DMN and the disruptive anticorrelation between the DMN and the salience network are found in BD. These findings suggest that the DMN is a key aspect for understanding the neural basis of BD, and the altered functional patterns of DMN may be a potential candidate biomarker of BD.


2021 ◽  
Vol 89 (9) ◽  
pp. S262-S263
Author(s):  
Mohammad S.E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles Ellis ◽  
Jessica Turner ◽  
Vince Calhoun

2010 ◽  
Vol 183 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Dost Öngür ◽  
Miriam Lundy ◽  
Ian Greenhouse ◽  
Ann K. Shinn ◽  
Vinod Menon ◽  
...  

2016 ◽  
Vol 46 (12) ◽  
pp. 2513-2521 ◽  
Author(s):  
S. Alonso-Lana ◽  
M. Valentí ◽  
A. Romaguera ◽  
C. Sarri ◽  
S. Sarró ◽  
...  

BackgroundRelatively few studies have investigated whether relatives of patients with bipolar disorder show brain functional changes, and these have focused on activation changes. Failure of de-activation during cognitive task performance is also seen in the disorder and may have trait-like characteristics since it has been found in euthymia.MethodA total of 20 euthymic patients with bipolar disorder, 20 of their unaffected siblings and 40 healthy controls underwent functional magnetic resonance imaging during performance of the n-back working memory task. An analysis of variance (ANOVA) was fitted to individual whole-brain maps from each set of patient–relative–matched pair of controls. Clusters of significant difference among the groups were used as regions of interest to compare mean activations/de-activations between them.ResultsA single cluster of significant difference among the three groups was found in the whole-brain ANOVA. This was located in the medial prefrontal cortex, a region of task-related de-activation in the healthy controls. Both the patients and their siblings showed significantly reduced de-activation compared with the healthy controls in this region, but the failure was less marked in the relatives.ConclusionsFailure to de-activate the medial prefrontal cortex in both euthymic bipolar patients and their unaffected siblings adds to evidence for default mode network dysfunction in the disorder, and suggests that it may act as a trait marker.


2020 ◽  
Vol 29 ◽  
Author(s):  
Niccolò Zovetti ◽  
Maria Gloria Rossetti ◽  
Cinzia Perlini ◽  
Eleonora Maggioni ◽  
Pietro Bontempi ◽  
...  

Abstract Since its discovery in 1997, the default mode network (DMN) and its components have been extensively studied in both healthy individuals and psychiatric patients. Several studies have investigated possible DMN alterations in specific mental conditions such as bipolar disorder (BD). In this review, we describe current evidence from resting-state functional magnetic resonance imaging studies with the aim to understand possible changes in the functioning of the DMN in BD. Overall, several types of analyses including seed-based and independent component have been conducted on heterogeneous groups of patients highlighting different results. Despite the differences, findings seem to indicate that BD is associated with alterations in both frontal and posterior DMN structures, mainly in the prefrontal, posterior cingulate and inferior parietal cortices. We conclude this review by suggesting possible future research directions.


Sign in / Sign up

Export Citation Format

Share Document