scholarly journals Abnormal Spontaneous Brain Activity and Functional Connectivity of the Default Mode Network in Patients with Bipolar Disorder

Author(s):  
Lei Zhao ◽  
Qijing Bo ◽  
Zhifang Zhang ◽  
Feng Li ◽  
Yuan Zhou ◽  
...  

Abstract Background: No consistent evidence on the specific brain regions is available in the default mode network (DMN), which show abnormal spontaneous activity in bipolar disorder (BD). We aim to identify this region that is particularly impaired in patients with BD by using several different indices measuring spontaneous brain activity and then investigate its functional connectivity (FC).Methods: A total of 56 patients with BD and 71 healthy controls (HC) underwent resting-state functional magnetic resonance imaging. Three commonly used functional indices were used to identify the brain region showing abnormal spontaneous brain activity in BD. Then, this region served as the seed region for resting-state FC analysis to identify its functional networks altered in BD.Results: The BD group exhibited decreased fALFF, ReHo, and DC values in the left precuneus. The BD group had decreased rsFC within the DMN, indicated by decreased resting-state FC within the left precuneus and between the left precuneus and the medial prefrontal cortex. The BD group had decreased negative connectivity between the left precuneus and the left putamen, extending to the left insula.Conclusions: The findings provide convergent evidence for the abnormalities in the DMN of BD, particularly located in the left precuneus. Decreased FC within the DMN and the disruptive anticorrelation between the DMN and the salience network are found in BD. These findings suggest that the DMN is a key aspect for understanding the neural basis of BD, and the altered functional patterns of DMN may be a potential candidate biomarker of BD.

PLoS ONE ◽  
2009 ◽  
Vol 4 (5) ◽  
pp. e5743 ◽  
Author(s):  
Chaogan Yan ◽  
Dongqiang Liu ◽  
Yong He ◽  
Qihong Zou ◽  
Chaozhe Zhu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Outong Chen ◽  
Fang Guan ◽  
Yu Du ◽  
Yijun Su ◽  
Hui Yang ◽  
...  

A belief in communism refers to the unquestionable trust and belief in the justness of communism. Although former studies have discussed the political aim and social value of communism, the cognitive neural basis of a belief in communism remains largely unknown. In this study, we determined the behavioral and neural correlates between a belief in communism and a theory of mind (ToM). For study 1, questionnaire scores were measured and for study 2, regional homogeneity (ReHo) and resting-state functional connectivity (rsFC) were used as an index for resting-state functional MRI (rs-fMRI), as measured by the Belief in Communism Scale (BCS). The results showed that a belief in communism is associated with higher ReHo in the left thalamus and lower ReHo in the left medial frontal gyrus (MFG). Furthermore, the results of the rsFC analysis revealed that strength of functional connectivity between the left thalamus and the bilateral precuneus is negatively associated with a belief in communism. Hence, this study provides evidence that spontaneous brain activity in multiple regions, which is associated with ToM capacity, contributes to a belief in communism.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles A. Ellis ◽  
Zhijia Liang ◽  
Zening Fu ◽  
...  

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized.Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects.Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


2021 ◽  
Author(s):  
Kaley Davis ◽  
Emily Hirsch ◽  
Dylan Gee ◽  
Margaret Andover ◽  
Amy Krain Roy

Abstract Humans are reliant on their caregivers for an extended period of time, offering numerous opportunities for environmental factors, such as parental attitudes and behaviors, to impact brain development. The default mode network is a neural system encompassing the medial prefrontal cortex, posterior cingulate cortex, precuneus, and temporo-parietal junction, which is implicated in aspects of cognition and psychopathology. Delayed default mode network maturation in children and adolescents has been associated with greater general dimensional psychopathology, and positive parenting behaviors have been suggested to serve as protective mechanisms against atypical default mode network development. The current study aimed to extend the existing research by examining whether within- default mode network resting-state functional connectivity would mediate the relation between parental acceptance/warmth and youth psychopathology. Data from the Adolescent Brain and Cognitive Development study, which included a community sample of 9,058 children ages 9-10.9 years, were analyzed to test this prediction. Results from the analysis demonstrated a significant mediation, where greater parental acceptance/warmth predicted greater within- default mode network resting-state functional connectivity, which in turn predicted lower psychopathology. Our study provides preliminary support for the notion that positive parenting traits may reduce the risk for psychopathology in youth through their influence on the default mode network. Due to the cross-sectional nature of this study, we can only draw correlational inference; therefore, these relationships should be tested longitudinally in future investigations.


Sign in / Sign up

Export Citation Format

Share Document