scholarly journals Deletion of Glycogen Synthase Kinase-3β in D2 Receptor–Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor–Dependent Synaptic Plasticity

2020 ◽  
Vol 87 (8) ◽  
pp. 745-755 ◽  
Author(s):  
Yan-Chun Li ◽  
Priyalakshmi Panikker ◽  
Bo Xing ◽  
Sha-Sha Yang ◽  
Cassandra Alexandropoulos ◽  
...  
2014 ◽  
Vol 121 (3) ◽  
pp. 510-527 ◽  
Author(s):  
Guorong Tao ◽  
Jie Zhang ◽  
Lei Zhang ◽  
Yuanlin Dong ◽  
Buwei Yu ◽  
...  

Abstract Background: Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane is a commonly used anesthetic in children. Tau phosphorylation contributes to cognitive dysfunction. The authors therefore assessed the effects of sevoflurane on Tau phosphorylation and the underlying mechanisms in young mice. Methods: Six-day-old wild-type and Tau knockout mice were exposed to sevoflurane. The authors determined the effects of sevoflurane anesthesia on Tau phosphorylation, levels of the kinases and phosphatase related to Tau phosphorylation, interleukin-6 and postsynaptic density protein-95 in hippocampus, and cognitive function in both young wild-type and Tau knockout mice. Results: Anesthesia with 3% sevoflurane 2 h daily for 3 days induced Tau phosphorylation (257 vs. 100%, P = 0.0025, n = 6) and enhanced activation of glycogen synthase kinase 3β, which is the kinase related to Tau phosphorylation in the hippocampus of postnatal day-8 wild-type mice. The sevoflurane anesthesia decreased hippocampus postsynaptic density protein-95 levels and induced cognitive impairment in the postnatal day-31 mice. Glycogen synthase kinase 3β inhibitor lithium inhibited the sevoflurane-induced glycogen synthase kinase 3β activation, Tau phosphorylation, increased levels of interleukin-6, and cognitive impairment in the wild-type young mice. Finally, the sevoflurane anesthesia did not induce an increase in interleukin-6 levels, reduction in postsynaptic density protein-95 levels in hippocampus, or cognitive impairment in Tau knockout young mice. Conclusions: These data suggested that sevoflurane induced Tau phosphorylation, glycogen synthase kinase 3β activation, increase in interleukin-6 and reduction in postsynaptic density protein-95 levels in hippocampus of young mice, and cognitive impairment in the mice. Future studies will dissect the cascade relation of these effects.


Author(s):  
Jing Xu ◽  
Pengjuan Xu ◽  
Zhigui Li ◽  
Lu Xiao ◽  
Zhuo Yang

AbstractThe aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.


Sign in / Sign up

Export Citation Format

Share Document