Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran

2008 ◽  
Vol 99 (9) ◽  
pp. 3885-3889 ◽  
Author(s):  
Xiaowei Peng ◽  
Hongzhang Chen
2010 ◽  
Vol 101 (4) ◽  
pp. 1385-1388 ◽  
Author(s):  
Ch.N. Economou ◽  
A. Makri ◽  
G. Aggelis ◽  
S. Pavlou ◽  
D.V. Vayenas

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2379
Author(s):  
Priya Rana ◽  
Baskaran Stephen Inbaraj ◽  
Sushma Gurumayum ◽  
Kandi Sridhar

Valorization of agro-industrial waste through greener and biotechnological processes are promising approaches to minimize the generation of agro-industrial waste. Therefore, the study aimed to produce lignocellulolytic enzymes from agro-industrial waste under solid-state fermentation (SSF) conditions and study their application in the clarification of pumpkin juice. The SSF was performed with three different combinations of wheat bran + rice bran (WBRB), wheat bran + wheat straw (WBWS), and rice bran + wheat straw (RBWS) as dry solid substrates (1:1) using Fusarium oxysporum (MTCC 7229). The protein, carboxymethyl cellulase (CMCase), and xylanase contents ranged from 0.98–3.90 mg/g, 5.89–6.84 U/g substrate, and 10.08–13.77 U/g substrate, respectively in different agro-industrial waste as substrates (WBRB, WBWS, RBWS, and control). The increase in enzyme concentration (0.50–2.40%) added to pumpkin juice exhibited an increased juice yield (16.30–55.60%), reduced browning index (1.03–0.70), and an increase in clarity (5.31–13.77 %T), which was further confirmed by a total variance of 84.83% by principal component analysis. Thus, the low-cost lignocellulolytic enzymes can be produced from agro-industrial waste that might have applications in food and beverage industries. Hence, this approach could be used as a long-term sustainable and circular source to valorize agro-industrial waste towards the greener future and the preservation of ecosystems.


2020 ◽  
pp. 103159
Author(s):  
Sonja Jakovetić Tanasković ◽  
Nataša Šekuljica ◽  
Jelena Jovanović ◽  
Ivana Gazikalović ◽  
Sanja Grbavčić ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


Sign in / Sign up

Export Citation Format

Share Document