The role of N-acyl homoserine lactones in maintaining the stability of aerobic granules

2014 ◽  
Vol 159 ◽  
pp. 305-310 ◽  
Author(s):  
Yaochen Li ◽  
Wen Hao ◽  
Junping Lv ◽  
Yaqin Wang ◽  
Chen Zhong ◽  
...  
2019 ◽  
Vol 86 ◽  
pp. 113-124 ◽  
Author(s):  
Maicol Ahumedo Monterrosa ◽  
Johan Fabian Galindo ◽  
Javier Vergara Lorduy ◽  
Jorge Alí-Torres ◽  
Ricardo Vivas-Reyes

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Abhishek Shrestha ◽  
Adam Schikora

ABSTRACT Bacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.


2013 ◽  
Vol 81 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Charlotte Majerczyk ◽  
Loren Kinman ◽  
Tony Han ◽  
Richard Bunt ◽  
E. Peter Greenberg

ABSTRACTManyProteobacteriause acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important forBurkholderia malleimouse lung infections. To gain in-depth information on the role of QS inB. malleivirulence, we constructed and characterized a mutant ofB. malleistrain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS inB. malleiATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acuteB. malleiinfections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network inB. pseudomalleifrom which this host-adapted pathogen evolved.


2016 ◽  
Vol 107 (1) ◽  
pp. 118-124 ◽  
Author(s):  
Cuiyun Yang ◽  
Shengtao Fang ◽  
Dehui Chen ◽  
Jianhua Wang ◽  
Fanghua Liu ◽  
...  

TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Sign in / Sign up

Export Citation Format

Share Document