Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas

2017 ◽  
Vol 244 ◽  
pp. 1235-1244 ◽  
Author(s):  
Yoon Young Choi ◽  
Jae Min Joun ◽  
Jeewon Lee ◽  
Min Eui Hong ◽  
Hoang-Minh Pham ◽  
...  
Author(s):  
Jens Sohnemann ◽  
Walter Schäfers ◽  
Armin Main

For the waste disposal of urban areas and major cities at the North American market place rather large scale energy from waste (EfW) plants are needed. This implies a mechanical input of approx. 40 Mg/h [39.36 tn l./h] and thermal input by waste per unit of 110 MW [375.3 MBTU/h] and more. There are basic design criteria that feature large scale EfW plants: - Layout of boiler with horizontal or vertical orientation of convective part. - Top or bottom suspension of boiler. - Flexible design of stoker regarding large throughput figures and heating values of waste with water or air cooled grate bars. - Design and geometry of combustion furnace in order to optimize the flow pattern. - Optimization of boiler steel structure: integrated steel structure for boiler and boiler house enclosure. - Optimization of corrosion protection and maintainability of large scale boilers: cladding versus refractory lining. - Maintenance aspects of the boiler. The paper gives information on the pros and cons regarding the design features with special focus on optimized solutions for large scale EfW plants. For the core component of the combustion system — the grate — Fisia Babcock Environment (FBE) is using forward moving grates as well as roller grates. The moving grate in STEINMÜLLER design, which is used in the great majority of all our plants, has specific characteristics for providing uniform combustion and optimal burnout. The automatic combustion rate control system is the key component in the combustion process in order to receive good burn out quality in slag and flue gas as well as constant steam production and oxygen content of flue gas. This paper includes a detailed report on a modern control system with focus on a simple and efficient control structure. Besides these measures regarding the combustion process, this paper also reports about the respective aspects and concepts for the flue gas cleaning systems. In this field the FBE CIRCUSORB® process was presented in previous papers and is now compared with a multistage wet flue gas cleaning system. The latter is relevant in case of very low emission requirements.


2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 434-439 ◽  
Author(s):  
Dangyang JIE ◽  
Fenglei NI ◽  
Yisong TAN ◽  
Hong LIU ◽  
Hegao CAI

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1099
Author(s):  
María José Rodríguez-Torres ◽  
Ainoa Morillas-España ◽  
José Luis Guzmán ◽  
Francisco Gabriel Acién

One of the most critical variables in microalgae-related processes is the pH; it directly determines the overall performance of the production system especially when coupling with wastewater treatment. In microalgae-related wastewater treatment processes, the adequacy of pH has a large impact on the microalgae/bacteria consortium already developing on these systems. For cost-saving reasons, the pH is usually controlled by classical On/Off control algorithms during the daytime period, typically with the dynamics of the system and disturbances not being considered in the design of the control system. This paper presents the modelling and pH control in open photobioreactors, both raceway and thin-layer, using advanced controllers. In both types of photobioreactors, a classic control was implemented and compared with a Proportional–Integral (PI) control, also the operation during only the daylight period and complete daily time was evaluated. Thus, three major variables already studied include (i) the type of reactors (thin-layers and raceways), (ii) the type of control algorithm (On/Off and PI), and (iii) the control period (during the daytime and throughout the daytime and nighttime). Results show that the pH was adequately controlled in both photobioreactors, although each type requires different control algorithms, the pH control being largely improved when using PI controllers, with the controllers allowing us to reduce the total costs of the process with the reduction of CO2 injections. Moreover, the control during the complete daily cycle (including night) not only not increases the amount of CO2 to be injected, otherwise reducing it, but also improves the overall performance of the production process. Optimal pH control systems here developed are highly useful to develop robust large-scale microalgae-related wastewater treatment processes.


Sign in / Sign up

Export Citation Format

Share Document