Cultivation of aerobic granular sludge in continuous flow under various selective pressure

2018 ◽  
Vol 253 ◽  
pp. 281-287 ◽  
Author(s):  
Tanner R. Devlin ◽  
Jan A. Oleszkiewicz
2016 ◽  
Vol 200 ◽  
pp. 1055-1059 ◽  
Author(s):  
S.F. Corsino ◽  
R. Campo ◽  
G. Di Bella ◽  
M. Torregrossa ◽  
G. Viviani

2016 ◽  
Vol 181 (1) ◽  
pp. 424-433 ◽  
Author(s):  
Xin Xin ◽  
Hang Lu ◽  
Li Yao ◽  
Lu Leng ◽  
Lei Guan

2012 ◽  
Vol 518-523 ◽  
pp. 478-484 ◽  
Author(s):  
Feng Deng ◽  
Rui Zhang

The impact of intermittent aeration on aerobic granular sludge in a continuous flow reactor was studied. Nine intermittent aeration modes were set up to investigate the change of DO, pH, COD removal efficiency and SOUR. The results showed DO and pH had different change tendencies. The 3-1 mode was the optimal mode under these experiment conditions. In aerating stage, the highest COD removal efficiency could achieve 96.32%. Stopping aeration for one hour, COD removal efficiency could still reach at 90.20%. This operation mode could save about 25% energy consumption theoretically. The comparison of SOUR between continuous aeration and 4-2 mode showed that the intermittent aeration had little effect on granular sludge activity. The theory of stress & damage and unbalanced growth could explain this appearance.


2019 ◽  
Vol 70 (1) ◽  
pp. 283-285
Author(s):  
Elena Elisabeta Manea ◽  
Costel Bumbac

Increasing the efficiency and capacity of existing wastewater treatment plants can be carried out by using intensive biological processes. One of the currently studied biological solutions consists in using aerobic granular sludge in order to achieve both organics and nutrients removal simultaneously in one tank and with high efficiency. Aerobic granular sludge is currently used at full scale in sequential batch reactors, research for identifying the optimal solutions for continuous flow systems being carried out worldwide. The paper summarizes the results obtained for two continuous flow configurations with aerobic granular sludge, in terms of organics and nutrients removal for synthetic wastewater in laboratory conditions. Both experimental setups led to wastewater treatment efficiencies, with values ranging between 80 and 99% for COD, 85 and 99% for BOD5, 52 and 98% for NH4+ and 5 to 87% for TP.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1792
Author(s):  
Aurora Rosa-Masegosa ◽  
Barbara Muñoz-Palazon ◽  
Alejandro Gonzalez-Martinez ◽  
Massimiliano Fenice ◽  
Susanna Gorrasi ◽  
...  

Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.


Sign in / Sign up

Export Citation Format

Share Document